Pediatric tuberculosis (TB) is still challenged by several diagnostic bottlenecks, imposing a high TB burden in low- and middle-income countries (LMICs). Diagnostic turnaround time (TAT) and ease of operation to suit resource-limited settings are critical aspects that determine early treatment and influence morbidity and mortality. Based on TAT and ease of operation, this article reviews the evolving landscape of TB diagnostics, from traditional methods like microscopy and culture to cutting-edge molecular techniques and biomarker-based approaches. We examined the benefits of efficient rapid results against potential trade-offs in accuracy and clinical utility. The review highlights emerging molecular methods and artificial intelligence-based detection methods, which offer promising improvements in both speed and sensitivity. The review also addresses the challenges of implementing these technologies in resource-limited settings, where most pediatric TB cases occur. Gaps in the existing diagnostic methods, algorithms, and operational costs were also reviewed. Developing optimal diagnostic strategies that balance speed, performance, cost, and feasibility in diverse healthcare settings can provide valuable insights for clinicians, researchers, and policymakers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms13010178 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!