The rise in antimicrobial resistance (AMR) in underscores the urgent need for alternative treatments. This study evaluated the minimal inhibitory concentrations (MICs) of four metal ions (cobalt, copper, silver, and zinc) and colloidal silver against 15 clinical isolates, alongside conventional antimicrobials (florfenicol, tetracycline, tulathromycin, and tylosin). Colloidal silver demonstrated the most effective antimicrobial activity, inhibiting 81.25% of isolates at 1.5 mg/L, while silver inhibited 93.7% of isolates at concentrations above 1.5 mg/L. Copper exhibited notable efficacy, inhibiting 37.5% of isolates at 1.5 mg/L, with a small proportion responding at 0.1 mg/L. Cobalt and zinc displayed variable activity, with MIC values ranging from 0.7 to 12.5 mg/L. In contrast, conventional antimicrobials showed limited effectiveness: tetracycline inhibited 31.25% of isolates at ≥16 mg/L, tylosin inhibited 25% at 16 mg/L, and tulathromycin MICs ranged from 0.5 to 8 mg/L. Time-kill assays revealed a reduction in viability after eight hours of exposure to silver and colloidal silver, though higher concentrations (4×-8× MIC) were required for complete eradication. These findings highlight the significant potential of colloidal silver and copper as alternatives for treating infections and combating AMR. Further research is essential to explore their standalone and synergistic applications for therapeutic use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms13010169 | DOI Listing |
Microorganisms
January 2025
Australian Center for Antimicrobial Resistance Ecology, School of Animal & Veterinary Sciences, The University of Adelaide, Rose Worthy Campus, Mudla Wirra Rd., Roseworthy, SA 5371, Australia.
The rise in antimicrobial resistance (AMR) in underscores the urgent need for alternative treatments. This study evaluated the minimal inhibitory concentrations (MICs) of four metal ions (cobalt, copper, silver, and zinc) and colloidal silver against 15 clinical isolates, alongside conventional antimicrobials (florfenicol, tetracycline, tulathromycin, and tylosin). Colloidal silver demonstrated the most effective antimicrobial activity, inhibiting 81.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
Chirality epitomizes the sophistication of chemistry, representing some of its most remarkable achievements. Yet, the precise synthesis of chiral structures from achiral building blocks remains a profound and enduring challenge in synthetic chemistry and materials science. Here, we demonstrate that achiral colloidal nanocrystals, including Au and Ag nanocrystals, can assemble into long-range-ordered helical assemblies with the assistance of chiral molecules.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Mickiewicza Av. 24/28, 30-059 Kraków, Poland.
The widespread use of silver nanoparticles in many industries is increasing every year. Along with this use, there is growing concern about the potential unintentional exposure of human and animal organisms to these nanomaterials. It has been shown that AgNPs have the ability to penetrate organisms and can have harmful effects on cells and organs in the body.
View Article and Find Full Text PDFAnticancer Res
December 2024
USC-Fobic Therapeutic Innovation Initiative, Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, U.S.A.
Anticancer Res
November 2024
USC-Fobic Therapeutic Innovation Initiative Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, U.S.A.
Background/aim: Cervical cancer is the third leading cause of cancer-related death in women worldwide. Nearly all cases of cervical cancer are due to infection with human papillomavirus (HPV). Nowarta110 has shown breakthrough therapeutic efficacy in phase II clinical study against plantar warts, with no reported side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!