Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis. Similarly, obesity-induced dysregulation of sebaceous lipid composition increases saturated fatty acids, favoring pathogenic strains of , which produce inflammatory metabolites that exacerbate acne. Advances in metabolomics and microbiome sequencing have unveiled critical biomarkers, such as short-chain fatty acids and microbial signatures, predictive of therapeutic outcomes. For example, elevated butyrate levels in psoriasis have been associated with reduced Th17-mediated inflammation, while the presence of specific Lactobacillus strains has shown potential to modulate immune tolerance in atopic dermatitis. Furthermore, machine learning models are increasingly used to integrate multi-omics data, enabling personalized interventions. Emerging therapies, such as probiotics and postbiotics, aim to restore microbial diversity, while phage therapy selectively targets pathogenic bacteria like without disrupting beneficial flora. Clinical trials have demonstrated significant reductions in inflammatory lesions and improved quality-of-life metrics in patients receiving these microbiota-targeted treatments. This review synthesizes current evidence on the bidirectional interplay between metabolic disorders and skin microbiota, highlighting therapeutic implications and future directions. By addressing systemic metabolic dysfunction and microbiota-mediated pathways, precision strategies are paving the way for improved patient outcomes in dermatologic care.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms13010161DOI Listing

Publication Analysis

Top Keywords

skin microbiota
12
metabolic disorders
12
atopic dermatitis
12
cutaneous health
8
metabolic dysfunction
8
fatty acids
8
metabolic
6
skin
5
microbiota mediator
4
mediator interactions
4

Similar Publications

Epigenetic mechanisms are central to the regulation of all biological processes. This manuscript reviews the current understanding of diverse epigenetic modifications and their role in the establishment and maintenance of normal skin functions. In healthy skin, these mechanisms allow for the precise control of gene expression, facilitating the dynamic balance between cell proliferation and differentiation necessary for effective barrier function.

View Article and Find Full Text PDF

Radiation-induced skin toxicity, resulting from ionizing or nonionizing radiation, is a common skin disorder. However, the underlying relationship between skin microbiota and radiation-induced skin toxicity remains largely unexplored. Herein, we uncover the microbiota-skin interaction based on a genome-wide association study (GWAS) featuring 150 skin microbiota and three types of skin microenvironment.

View Article and Find Full Text PDF

Metabolic disorders, including type 2 diabetes mellitus (T2DM), obesity, and metabolic syndrome, are systemic conditions that profoundly impact the skin microbiota, a dynamic community of bacteria, fungi, viruses, and mites essential for cutaneous health. Dysbiosis caused by metabolic dysfunction contributes to skin barrier disruption, immune dysregulation, and increased susceptibility to inflammatory skin diseases, including psoriasis, atopic dermatitis, and acne. For instance, hyperglycemia in T2DM leads to the formation of advanced glycation end products (AGEs), which bind to the receptor for AGEs (RAGE) on keratinocytes and immune cells, promoting oxidative stress and inflammation while facilitating Staphylococcus aureus colonization in atopic dermatitis.

View Article and Find Full Text PDF

Oral diseases, particularly dental caries and periodontal disease, pose significant global health challenges. The imbalance of the oral microbiota plays a key role in the occurrence of these diseases, prompting researchers to seek new strategies to restore oral ecological balance. is a Gram-positive rod-shaped bacterium that exists in various body parts of humans, including the gastrointestinal tract, urinary tract, skin, and so on.

View Article and Find Full Text PDF

Characteristics and Differences in the Antler Velvet Microbiota During Regeneration.

Microorganisms

December 2024

Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China.

The skin surface has a complex and dynamic ecosystem inhabited by a diverse microbiota. The wound formed by antler velvet shedding can naturally achieve regenerative restoration, but the changes in microbial composition that occur during antler velvet regeneration are largely unknown. In this study, we analyzed the antler velvet microbiota of sika deer at 15 days (Half) and 30 days (Full) post-pedicle casting using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!