NcSWP8, a New Spore Wall Protein, Interacts with Polar Tube Proteins in the Parasitic Microsporidia .

Microorganisms

Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China.

Published: January 2025

is a pathogen that affects and Fabricius, capable of spreading within and between honeybee colonies. The spore wall of microsporidia is the initial structure to contact the host cell directly, which may play a crucial role in the infection process. Currently, several spore wall proteins have been identified in microsporidia, but only two spore wall proteins from have been characterized. Here, we report the expression and identification of a novel spore wall protein, NcSWP8, with a molecular mass of 21.37 kDa in . Subcellular localization analysis revealed that NcSWP8 was localized on the spore wall of . Co-immunoprecipitation and Far-Western blotting experiments demonstrated that NcSWP8 could stably interact with polar tube proteins, NcPTP2 and NcPTP3. The antibody blocking assay significantly decreased their infection rate, indicating that NcSWP8 played a significant role in the process of infection. These results together suggested that NcSWP8 was a new spore wall protein localized to the spore wall and interacted with the polar tube proteins, playing a crucial role in supporting the formation of the spore wall and potentially affecting the process of infection of .

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms13010142DOI Listing

Publication Analysis

Top Keywords

spore wall
36
wall protein
12
polar tube
12
tube proteins
12
wall
9
ncswp8 spore
8
spore
8
crucial role
8
wall proteins
8
localized spore
8

Similar Publications

NcSWP8, a New Spore Wall Protein, Interacts with Polar Tube Proteins in the Parasitic Microsporidia .

Microorganisms

January 2025

Key Laboratory of Pollinator Resources Conservation and Utilization of the Upper Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing Normal University, Chongqing 401331, China.

is a pathogen that affects and Fabricius, capable of spreading within and between honeybee colonies. The spore wall of microsporidia is the initial structure to contact the host cell directly, which may play a crucial role in the infection process. Currently, several spore wall proteins have been identified in microsporidia, but only two spore wall proteins from have been characterized.

View Article and Find Full Text PDF

Cryptosporidium is a leading cause of diarrhea in children and immunocompromised patients. Various animals and birds can also be infected with this protist, and Cryptosporidium zoonosis is common. A few reports have been published worldwide on Cryptosporidium infections in chickens.

View Article and Find Full Text PDF

Purpose: The brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae), is an invasive and a highly polyphagous species with a strong dispersal capacity. Unfortunately, there is currently no effective control method that can prevent or reduce the economic loss caused by this pest. Among natural enemies, microsporidia cause infections in insects so that they can generally shorten life span, reduce fertility and inhibit growth.

View Article and Find Full Text PDF

Cell Wall Protein 2 as a Vaccine Candidate Protects Mice Against Infection.

Vaccines (Basel)

December 2024

Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33620, USA.

Background/objectives: is a Gram-positive, spore-forming enteric pathogen that causes intestinal disorders, including inflammation and diarrhea, primarily through toxin production. Standard treatment options for infection (CDI) involve a limited selection of antibiotics that are not fully effective, leading to high recurrence rates. Vaccination presents a promising strategy for preventing both CDI and its recurrence.

View Article and Find Full Text PDF

Objective: To investigate the physiological characteristics of subspecies (Bti) with double mutations of and genes and to assess the activity of Bti against larvae of under different external factors, so as to provide the theoretical evidence for the use of engineered bacteria of Bti for effective mosquito control.

Methods: wild-type strain Bt-59 and Bt-59 strain with mutation [Bt-59 (Δ)] were cultured in nutrient broth media for 24 hours, and Bt-59 strains with mutation [Bt-59 (Δ)] and double mutations of and [Bt-59 (Δ)] were cultured in nutrient broth media for 48 hours. Then, 5 μL of culture media were transferred to glass sides, and cell morphology and mother cell lysis were observed under an optical microscope.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!