strain PJH16, isolated and tested by our team, suppresses cucumber wilt as an efficient biocontrol agent. For further investigation, the strain has been combined with two other ( VJH504 and JNF2) to enhance biocontrol ability, which formed high-efficiency microbial agents in the current study. The methodological target taken is based on achieving the optimal growth conditions of the combined microbial agents; hence, the medium composition and culture conditions were optimized through a single-factor test, orthogonal test and response surface methodology. Following this, the effectiveness of the microbial combination was assessed through pot experiments, which provided a theoretical foundation for the synthesis of microbial flora to significantly control cucumber Fusarium wilt. The results showed excellent compatibility, proving suitable for the proliferation and growth of PJH16, VJH504, and JNF2 strains together, specifically, when the inoculation amounts were adjusted to 4% of each. Using the single-factor test and orthogonal test analysis, the optimum composition of culture medium for the composite strain was identified as 3% glucose as the optimal carbon source, 2% yeast extract powder as the preferred nitrogen source, and 1% dipotassium hydrogen phosphate as the most suitable inorganic salt. Furthermore, the optical density (OD) of the composite strain solution reached its highest level at 3.16 under the following culture conditions: inoculation volume of 200 µL, 171 rpm culture speed, 21.6 h culture time, 30 °C cultural temperature, and an initial pH of 7.0. The pot experiment demonstrated that the mixed bacterial solution achieved a relative control efficacy of 93.4% against cucumber wilt, which was significantly superior to that of single- strain or pesticide treatment, and also promoted cucumber growth. In summary, the microbial flora synthesized by the three strains displayed a high bacterial concentration, following the optimization of culture conditions, and exerted remarkable control and growth-promoting effects on cucumber wilt. This finding holds great significance for future developments of composite microbial agents.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms13010133DOI Listing

Publication Analysis

Top Keywords

cucumber wilt
16
microbial agents
12
culture conditions
12
enhance biocontrol
8
vjh504 jnf2
8
composition culture
8
single-factor test
8
test orthogonal
8
orthogonal test
8
microbial flora
8

Similar Publications

strain PJH16, isolated and tested by our team, suppresses cucumber wilt as an efficient biocontrol agent. For further investigation, the strain has been combined with two other ( VJH504 and JNF2) to enhance biocontrol ability, which formed high-efficiency microbial agents in the current study. The methodological target taken is based on achieving the optimal growth conditions of the combined microbial agents; hence, the medium composition and culture conditions were optimized through a single-factor test, orthogonal test and response surface methodology.

View Article and Find Full Text PDF

Background: Fungal diseases of plants have a serious impact on the quality and yield of crops, and some traditional pesticides can no longer cope with this problem. Therefore, it is of great significance to develop new pesticides with high efficiency and low toxicity.

Results: A series of flavonoid derivatives containing benzothiazole were designed and synthesized.

View Article and Find Full Text PDF

A bacterial strain, designated as A6, was isolated from the rhizosphere soil of a healthy muskmelon in Wenchang, Hainan Province, China. The cells of strain A6 were Gram-negative, aerobic, short rod and motile with a single polar flagellum. Strain A6 could tolerate up to 55.

View Article and Find Full Text PDF

Cucumber wilt disease, caused by f. sp. (FOC), is a major threat to cucumber production, especially in greenhouses.

View Article and Find Full Text PDF

Exploring sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens.

Mar Drugs

November 2024

Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.

This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!