The mechanisms underlying post-acute sequelae of SARS-CoV-2 infection (PASC) are a topic of debate. This study examined the presence of SARS-CoV-2 microRNA (miRNA)-like small RNAs in extracellular fluids and their potential link to PASC by using a quantitative stem-loop RT-PCR MiRNA assay. Initially, it was demonstrated that three previously identified SARS-CoV-2 miRNA-like small RNAs, specifically svRNA 1 and 2 and miR-07a, were significantly expressed in infected cells in vitro and released into the supernatant following infection by different SARS-CoV-2 variants. Then, the expression of three SARS-CoV-2 small RNAs was studied in both nasopharyngeal swabs (NPS) and sera from 24 patients at their initial COVID-19 diagnosis (T0) and in sera collected 91 to 193 days post-diagnosis (T1). Notably, 11 out of 24 patients (46%) reported PASC consequences. All NPS samples showed SARS-CoV-2 small RNA expression with an altered cytokine network during acute infection, but it did not correlate with PASC outcomes. Serum samples had similar small RNA statuses, though PASC patients, notably at T1, but not at T0, displayed reduced overall positivity compared to those without PASC. The host target expression of SARS-CoV-2 small RNAs was not significantly different between groups. This suggests a need for further research into SARS-CoV-2 small RNA and its role in viral behavior and PASC consequences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms13010126 | DOI Listing |
Chin Med J (Engl)
January 2025
Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, National Clinical Research Center for Obstetric & Gynecologic Diseases, Beijing 100730, China.
Background: Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP.
Methods: Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts.
Virol J
January 2025
Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong, 518118, China.
Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Universal Scientific Education and Research Network (USERN), Tehran, Iran.
Objective: Lung cancer (LC), the primary cause for cancer-related death globally is a diverse illness with various characteristics. Saliva is a readily available biofluid and a rich source of miRNA. It can be collected non-invasively as well as transported and stored easily.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!