Bisphenol A, an endocrine-disrupting compound, is widely used in the industrial production of plastic products. Despite increasing concerns about its harmful effects on human health, animals, and the environment, the use of BPA has been banned only in infant products, and its effects on cellular processes are not fully understood. To investigate the impact of BPA on eukaryotic cells, we analyzed the proteome changes of wild-type and -deleted strains exposed to different doses of BPA using sample multiplexing-based proteomics. We found that the ABC multidrug transporter Pdr5 plays an important role in protecting yeast cells from BPA toxicity, with its absence significantly sensitizing cells to BPA. BPA inhibited yeast growth in a dose-dependent manner, with a more pronounced effect in -deleted cells. Proteomic analysis revealed that BPA induces widespread dose-dependent changes in protein abundance, including the upregulation of metabolic pathways such as arginine biosynthesis and the downregulation of mitochondrial proteins. Additionally, we observed markers of cellular stress induced by BPA by identifying multiple stress-induced proteins that were upregulated by this compound. As cellular processes affected by BPA have been shown to be evolutionarily conserved, these insights can advance our understanding of BPA's cellular impact and its broader effects on human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms13010114 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767658 | PMC |
Metabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China. Electronic address:
Bisphenol A (BPA), a commonly used plastic additive, is believed to cause obesity. As an environmental endocrine disruptor, BPA is closely associated with the onset and progression of BC. However, the molecular mechanisms underlying the promotion of breast cancer by BPA remain unclear.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
NHC Key Laboratory of Public Nutrition and Health, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China. Electronic address:
In 2023, European Food Safety Authority (EFSA) published a re-evaluation of the safety of bisphenol A (BPA), establishing the new tolerable daily intake (TDI) as 0.2 ng/kg·bw/day with a 20,000-fold reduction compared to 2015, which regained public concern about the impact of bisphenols (BPs) on human health. In order to explore the health risk to thyroid function of BPs, in this study, we assessed the internal exposure levels of BPs and the relationships between urinary BPs and thyroid function in general adults.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China; Hebei Veterinary Biotenology Innovation Center, Baoding 071001, China. Electronic address:
Bisphenol A (BPA) is used extensively in producing industrial chemicals such as plastic products, resin, and paper coatings. Concerns have been expressed regarding its possible detrimental consequences, especially on the reproductive system of mammals. Despite extensive study in this domain, there has been no targeted examination of the impact of BPA on F1 generation rabbits.
View Article and Find Full Text PDFArch Environ Occup Health
January 2025
Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
Bisphenol A (BPA) is a hazardous endocrine disruptor released into the environment during the production of certain plastics used for covering of food and beverage cans. In this work, we examined the protective benefits of selenium (Se) against intestinal damage induced by BPA in male rats. Rats were distributed randomly into four groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!