Severe COVID-19 and MIS-C are rare but serious outcomes associated with SARS-CoV-2 infection. The onset of MIS-C often involves the gastrointestinal system, suggesting a potential connection with gut microbiota. This study aims to compare the gut microbiota of children with severe COVID-19 and those with MIS-C using various biomolecular approaches. Gut microbiota composition and specific microbial modulations were analyzed using fecal samples collected at hospital admission. The study included hospitalized patients (mean age 6 ± 5 years) diagnosed with severe COVID-19 (37 patients) or MIS-C (37 patients). Microbial differences were assessed using both NGS and qRT-PCR methodologies. In 75% of cases, pharmacological treatments included antibiotics and corticosteroids, which influenced the microbiota composition. Early age was found to have the most significant impact on microbiota diversity. Significant differences in alpha and beta diversity were observed between COVID-19 and MIS-C patients, particularly concerning low-abundance species. Levels of spp., spp., and were comparable between groups, while an increased activity of spp. was noted in children with positive fecal samples ( = 0.019). An in-depth evaluation of lesser-known gut species may be key to reducing the risk of severe outcomes and developing microbiota-based biomarkers for the early diagnosis of MIS-C.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms13010083DOI Listing

Publication Analysis

Top Keywords

gut microbiota
16
severe covid-19
16
covid-19 mis-c
16
microbiota composition
8
fecal samples
8
mis-c patients
8
mis-c
7
microbiota
6
gut
5
patients
5

Similar Publications

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Background: Despite prior observational studies suggesting a link between gut microbiota to Kawasaki disease (KD), these findings remain debated. This study aimed to assess the association between gut microbiota and KD on a genetic level using a two-sample Mendelian randomization (MR) analysis.

Methods: This two-sample MR analysis utilized summary statistics from the largest genome-wide association study meta-analysis on gut microbiota conducted by the MiBioGen consortium.

View Article and Find Full Text PDF

There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.

View Article and Find Full Text PDF

Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.

View Article and Find Full Text PDF

Microbiota and immune dynamics in rheumatoid arthritis: Mechanisms and therapeutic potential.

Best Pract Res Clin Rheumatol

January 2025

Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, China; Division of Rheumatology, Department of Medicine, University of Colorado, No. 11, Xizhimen South Street, Xicheng District, Aurora, CO, 80045, USA. Electronic address:

Rheumatoid arthritis (RA) is a complex autoimmune disease with growing evidence implicating the microbiota as a critical contributor to its pathogenesis. This review explores the multifaceted roles of microbial dysbiosis in RA, emphasizing its impact on immune cell modulation, autoantibody production, gut barrier integrity, and joint inflammation. Animal models reveal how genetic predisposition and environmental factors interact with specific microbial taxa to influence disease susceptibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!