The Bacterial Type III Secretion System as a Broadly Applied Protein Delivery Tool in Biological Sciences.

Microorganisms

College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China.

Published: January 2025

The type III secretion system (T3SS) is a nano-machine that allows Gram-negative bacteria to alter eukaryotic host biology by directly delivering effector proteins from the bacterial cytoplasm. Protein delivery based on the bacterial T3SS has been widely used in research in biology. This review explores recent advancements in the structure and function of the T3SS. We explore the molecular underpinnings of the T3SS apparatus, which spans bacterial and host cell membranes, and discuss the intricate transport mechanisms of effector proteins. Furthermore, this review emphasizes the innovative applications of the T3SS in crop biology, where it has been leveraged to study plant-pathogen interactions. By summarizing the current knowledge and recent progress, we underscore the potential of the T3SS as a powerful tool in biological sciences and their implications for future research in plant pathology and agricultural biotechnology.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms13010075DOI Listing

Publication Analysis

Top Keywords

type iii
8
iii secretion
8
secretion system
8
protein delivery
8
tool biological
8
biological sciences
8
effector proteins
8
t3ss
6
bacterial
4
bacterial type
4

Similar Publications

Is the Coronal Plane Alignment of the Knee (CPAK) Classification Useful to Plan Individualized Total Knee Arthroplasty Surgery for the Spanish Population? A Critical Analysis of the CPAK Classification.

Rev Esp Cir Ortop Traumatol

January 2025

Knee Surgery Unit, iMove Traumatology, Barcelona, Spain; Knee Surgery Unit, Orthopaedic Surgery Department, Hospital Sant Joan de Déu de Manresa - Fundació Althaia, Universitat de Vic, Manresa, Spain.

Introduction: The CPAK classification aims to categorize knee phenotypes. The original study was based on Australian and Belgian population, but significant variation in CPAK distribution exists between different geographic areas. The primary objective is to evaluate knee phenotypes of osteoarthritic Spanish population based on the CPAK system.

View Article and Find Full Text PDF

Background: Evidence from preclinical studies suggests that IL-6 signalling has the potential to modulate immunopathogenic mechanisms upstream of autoantibody effector mechanisms in patients with generalised myasthenia gravis. We aimed to assess the safety and efficacy of satralizumab, a humanised monoclonal antibody targeting the IL-6 receptor, in patients with generalised myasthenia gravis.

Methods: LUMINESCE was a randomised, double-blind, placebo-controlled, multicentre, phase 3 study at 105 sites, including hospitals and clinics, globally.

View Article and Find Full Text PDF

Arsenic-induced modulation of virulence and drug resistance in Pseudomonas aeruginosa.

J Hazard Mater

January 2025

Advanced Mass Spectrometry Center, Research Core Facility, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610213, China. Electronic address:

Arsenic contamination of water sources, whether from natural or industrial origins, represents a significant risk to human health. However, its impact on waterborne pathogens remains understudied. This research explores the effects of arsenic exposure on the opportunistic pathogen Pseudomonas aeruginosa, a bacterium found in diverse environments.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!