type F is a spore-forming bacterium that causes human illnesses, including food poisoning (FP) and non-foodborne gastrointestinal diseases. In this study, we evaluated the antimicrobial activities of 15 natural products against spore growth. Among them, garlic, onion juice, and undiluted essential oil constituents (EOCs) of clove, rosemary, and peppermint showed the strongest activity. Therefore, we examined the inhibitory effects of these products on each stage of the life cycle of FP strains, including spore germination, spore outgrowth, and vegetative growth, in laboratory media and chicken meat. Both clove and peppermint oils (at 0.5%; /) inactivated spore germination in nutrient-rich trypticase-glucose-yeast extract (TGY) medium. Furthermore, EOCs at (0.1-0.5%) arrested the spore outgrowth of in TGY medium. Interestingly, EOCs at 0.5% completely inhibited the vegetative growth of FP isolates during a 6 h incubation in TGY medium. However, even at 4-fold higher concentrations (2%), EOCs were unable to inactivate spore growth in contaminated chicken meat stored under abusive conditions. Although some of the natural products inhibited spore germination, outgrowth, and vegetative growth in TGY medium, no such inhibitory activity was observed when these products were applied to spore-inoculated chicken meat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/microorganisms13010072 | DOI Listing |
Sci Total Environ
January 2025
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy. Electronic address:
Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kita 761-0795, Kagawa, Japan.
Kunth is native to tropical America and has invaded tropical and subtropical Asia and numerous Pacific Islands. It forms dense thickets and reduces native species diversity and populations in its introduced range. This invasive vine also seriously impacts many agricultural crops and is listed as one of the world's 100 worst invasive alien species.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand.
Nitrogen (N) is an essential determinant of strawberry growth and productivity. However, plants exhibit varying preferences for sources of nitrogen, which ultimately affects its use efficiency. Thus, it is imperative to determine the preferred N source for the optimization of indoor strawberry production.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima 411-8540, Japan.
During vegetative growth, plants undergo various morphological and physiological changes in the transition from the juvenile phase to the adult phase. In terms of stress resistance, it has been suggested that plants gain or reinforce disease resistance during the process of maturation, which is recognized as adult plant resistance or age-related resistance. While much knowledge has been obtained about changes in disease resistance as growth stages progress, knowledge about changes in plant responses to pathogens with progressing age in plants is limited.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Forestry, Northeast Forestry University, Harbin 150040, China.
The utilization of nitrogen (N) is crucial for the optimal growth and development of plants. As the dominant form of nitrogen in temperate soil, nitrate (NO) is absorbed from the soil and redistributed to other organs through NO transporters (NRTs). Therefore, exploration of the role of NRTs in response to various NO conditions is crucial for improving N utilization efficiency (NUE).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!