Aquaculture, a vital industry supplying a significant portion of the world's seafood, faces challenges such as the deterioration of the aquaculture environment. The objective of this study was to isolate and identify microorganisms with the capacity to eliminate nitrite in water from shrimp ponds and evaluate their potential as probiotics to improve water quality. Additionally, the study also determines the ideal conditions for the probiotic to effectively reduce nitrite-N and ammonia-N. Water samples were collected from four shrimp ponds (SW1, SW2, SW3, SW4) and isolates were obtained. Among all the samples, SW4 was the most effective in reducing the concentration of nitrite-N. Upon further isolation of SW4, the strain SW4-W6 showed significant nitrite-N reduction capabilities compared to the 19 other isolates tested. Through morphological, genetic (ITS sequence), and phylogenetic analyses, strain SW4-6 was identified as sp. The isolation of sp. SW4-6 showed superior nitrite-N and ammonia-N reduction capabilities, with sucrose as the carbon source and complete reduction observed at a C/N ratio of 15-20. Gene expression analysis revealed the up-regulation of nitrite reductase in SW4-6 after inoculation, with significantly higher expression observed with sucrose as the carbon source. Salinity and temperature significantly influenced nitrite-N and ammonia-N reduction by SW4-6, with higher temperatures (30 °C) and 0% NaCl favoring faster reduction rates. sp. SW4-6 emerges as a promising probiotic candidate for aquaculture water quality management due to its efficient nitrite-N and ammonia-N reduction capabilities under optimal conditions. Its virulence profile and ability to thrive across various salinity and temperature conditions further support its potential applicability in aquaculture.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms13010042DOI Listing

Publication Analysis

Top Keywords

nitrite-n ammonia-n
16
water quality
12
reduction capabilities
12
ammonia-n reduction
12
shrimp ponds
8
sucrose carbon
8
carbon source
8
salinity temperature
8
sw4-6
6
nitrite-n
6

Similar Publications

Aquaculture, a vital industry supplying a significant portion of the world's seafood, faces challenges such as the deterioration of the aquaculture environment. The objective of this study was to isolate and identify microorganisms with the capacity to eliminate nitrite in water from shrimp ponds and evaluate their potential as probiotics to improve water quality. Additionally, the study also determines the ideal conditions for the probiotic to effectively reduce nitrite-N and ammonia-N.

View Article and Find Full Text PDF

Electrolysis of HTL-AP for nutrient recovery by converting cyclic nitrogen to nitrate-N fertilizer.

Environ Pollut

December 2024

Department of Agricultural and Biological Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA. Electronic address:

Valorization of hydrothermal liquefaction aqueous phase (HTL-AP) can be achieved through its use as a nutrient source for lettuce production in hydroponic systems after being treated to reduce the nutrient imbalance. Removing nitrogen cyclic compounds in HTL-AP may impact the availability of some nutrients, such as nitrate-N, that are necessary for plant growth. Previous studies indicate that electrolysis enables nitrate-N accumulation in algal-HTL-AP.

View Article and Find Full Text PDF

The aquaculture industry is among the fastest growing food production sectors in the world. Land-based aquaculture systems continue to increase in popularity as they offer the benefits of controlling diseases, managing water quality, and minimizing threats to wild populations of fish. However, these systems discharge wastewater high in N and P.

View Article and Find Full Text PDF

The acute toxicity and sublethal effects of ammonia and nitrite on the air-beathing Siamese fighting fish, betta (Betta splendens) was studied for 96 h. The LC50 (50% Lethal Concentration) for 96 h for adult bettas to ammonia-N and nitrite-N was 123.4 mM (1.

View Article and Find Full Text PDF

Evaluation of a synbiotic formulation for water remediation in a shrimp pond.

Environ Sci Pollut Res Int

May 2023

Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, India.

In recent years, the use of probiotic bacteria has attracted the interest of the marine shrimp farming industry. However, there are certain limitations pertaining to the practical application of many commercially available probiotics. Here, a thoroughly screened optimal consortium of three indigenous sulfur probiotics was tested for antibiotic susceptibility and was found to be safe, with each culture being sensitive to all the tested antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!