Cooperation Between and for Carbendazim Degradation.

Microorganisms

Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.

Published: December 2024

Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination. In this work, RC1 and RC9 were isolated from a bacterial community growing in a biofilm reactor acclimated with microbiota from carbendazim-contaminated soil. Sequencing analysis of genomes of both strains revealed the presence of A, the gene coding for the enzyme that hydrolyses carbendazim to produce 2-aminobenzimidazole (2-AB). The alternative gene for the first catabolic step (I) was detected by PCR in strain RC9 but not in RC1. Metabolomic analysis by HPLC and LC-MS showed that both strains have the ability to metabolize carbendazim. RC1 converts carbendazim to 2-AB, the first degradation intermediary, while RC9 metabolizes the fungicide to its mineralization, probably because RC1 lacks the gene coding for 2-AB hydroxylase. HRESIMS-MS/MS results indicate that RC9 metabolizes carbendazim by cleavage of the benzene ring and subsequent formation of 5-formyl-2-hydroxy-4,5-dihydro-1H-imidazole-4-carboxylic acid (X2 CHNO). The presence of carbendazim metabolites in culture supernatants of strains RC9 and RC1 suggests that both strains contribute to the efficient degradation of carbendazim in nature.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms13010040DOI Listing

Publication Analysis

Top Keywords

carbendazim
8
degradation carbendazim
8
gene coding
8
rc9 rc1
8
rc9 metabolizes
8
rc1
5
rc9
5
cooperation carbendazim
4
carbendazim degradation
4
carbendazim cbz
4

Similar Publications

Cooperation Between and for Carbendazim Degradation.

Microorganisms

December 2024

Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.

Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination.

View Article and Find Full Text PDF

Determination of highly hazardous pesticides in fruits and vegetables in the Maya region of southeast of Mexico.

J Environ Sci Health B

January 2025

Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Mexico.

Highly Hazardous Pesticides (HHPs) have been identified as substances with severe adverse effects, including carcinogenicity, endocrine disruption, and reproductive toxicity. The aim of this study was to evaluate pesticide residues in fruits and vegetables from Hopelchén to provide evidence for policy recommendations on pesticide regulation. A total of 25 samples were collected and analyzed using the QuEChERS method with GC-MS/MS and LC-MS techniques.

View Article and Find Full Text PDF

Targeting tubulin protein to combat fungal disease: Design, synthesis, and its new mechanistic insights of benzimidazole hydrazone derivatives.

Int J Biol Macromol

January 2025

State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China. Electronic address:

As the vital the biomacromolecule in eukaryotic cells, tubulin protein is essential for preserving cell shape, facilitating cell division, and cell viability. Tubulin has been approved as promising target for anticancer, and antifungal therapy. However, there are still many gaps in tubulin-targeted fungicidal discovery.

View Article and Find Full Text PDF

SERS Detection of Hydrophobic Molecules: Thio-β-Cyclodextrin-Driven Rapid Self-Assembly of Uniform Silver Nanoparticle Monolayers and Analyte Trapping.

Biosensors (Basel)

January 2025

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.

High-sensitivity and repeatable detection of hydrophobic molecules through the surface-enhanced Raman scattering (SERS) technique is a tough challenge because of their weak adsorption and non-uniform distribution on SERS substrates. In this research, we present a simple self-assembly protocol for monolayer SERS mediated by 6-deoxy-6-thio-β-cyclodextrin (β-CD-SH). This protocol allows for the rapid assembly of a compact silver nanoparticle (Ag NP) monolayer at the oil/water interface within 40 s, while entrapping analyte molecules within hotspots.

View Article and Find Full Text PDF

A Sensitive and Selective Electrochemical Aptasensor for Carbendazim Detection.

Biosensors (Basel)

January 2025

School of Science, Computing, and Engineering Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia.

Carbendazim (CBZ) is used to prevent fungal infections in agricultural crops. Given its high persistence and potential for long-term health effects, it is crucial to quickly identify pesticide residues in food and the environment in order to mitigate excessive exposure. Aptamer-based sensors offer a promising solution for pesticide detection due to their exceptional selectivity, design versatility, ease of use, and affordability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!