In this study, we use petroleum systems modeling (PSM) to quantitatively simulate the uncertainty of biogenic gas generation modes and their impact on the spatial distribution and resource assessment of gas hydrates in the Baiyun Sag, South China Sea. The results are as follows: (1) Biogenic gas generation is significantly affected by thermal state and organic matter type. Low temperature is a primary reason for gas hydrate occurrence in shallower sediments when sufficient methane gas is present. This may be due to higher thermal conductivity of the overlying sediments, slower sediment burial rates, or other geological processes. (2) Natural gas hydrate resources are significantly controlled by biogenic gas generation. In addition to the thermal conditions of the source rock or sediment, the nature of the organic matter is another crucial factor. Generally, low-temperature methanogens produce more methane gas because they require less energy, whereas high-temperature methanogens require more energy and thus produce less methane gas. (3) The biogas generation thermal model is key to controlling the location and quantity of natural gas hydrate resources. The three possible gas-phase models, K0, K1, and K2 (representing different methanogens), produce varying amounts of methane gas over time, resulting in different amounts of natural gas hydrate resources. Additionally, the preservation of various methanogens in biogas source rocks can alter reservoir formation locations, influencing the scale and genetic model of natural gas hydrate resources.

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms13010005DOI Listing

Publication Analysis

Top Keywords

gas hydrate
24
methane gas
16
natural gas
16
hydrate resources
16
gas
14
biogenic gas
12
gas generation
12
biogas generation
8
baiyun sag
8
sag south
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!