Design and Study of a Novel P-Type Junctionless FET for High Performance of CMOS Inverter.

Micromachines (Basel)

State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.

Published: January 2025

In this paper, a novel p-type junctionless field effect transistor (PJLFET) based on a partially depleted silicon-on-insulator (PD-SOI) is proposed and investigated. The novel PJLFET integrates a buried N+-doped layer under the channel to enable the device to be turned off, leading to a special work mechanism and optimized performance. Simulation results show that the proposed PJLFET demonstrates an I/I ratio of more than seven orders of magnitude, with I reaching up to 2.56 × 10 A/μm, I as low as 3.99 × 10 A/μm, and a threshold voltage reduced to -0.43 V, exhibiting excellent electrical characteristics. Furthermore, a new CMOS inverter comprising a proposed PJLFET and a conventional NMOSFET is designed. With the identical geometric dimensions and gate electrode, the pull-up and pull-down driving capabilities of the proposed CMOS are equivalent, showing the potential for application in high-performance chips in the future.

Download full-text PDF

Source
http://dx.doi.org/10.3390/mi16010106DOI Listing

Publication Analysis

Top Keywords

novel p-type
8
p-type junctionless
8
cmos inverter
8
proposed pjlfet
8
design study
4
study novel
4
junctionless fet
4
fet high
4
high performance
4
performance cmos
4

Similar Publications

Design and Study of a Novel P-Type Junctionless FET for High Performance of CMOS Inverter.

Micromachines (Basel)

January 2025

State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China.

In this paper, a novel p-type junctionless field effect transistor (PJLFET) based on a partially depleted silicon-on-insulator (PD-SOI) is proposed and investigated. The novel PJLFET integrates a buried N+-doped layer under the channel to enable the device to be turned off, leading to a special work mechanism and optimized performance. Simulation results show that the proposed PJLFET demonstrates an I/I ratio of more than seven orders of magnitude, with I reaching up to 2.

View Article and Find Full Text PDF

Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm.

Nanomaterials (Basel)

January 2025

Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.

View Article and Find Full Text PDF

Complementary neural network circuits combining multifunctional high-performance p-type with n-type organic artificial synapses satisfy sophisticated applications such as image cognition and prosthesis control. However, implementing the dual-modal memory features that are both volatile and nonvolatile in a synaptic transistor is challenging. Herein, for the first time, we propose a single vertical n-type organic synaptic transistor (VNOST) with a novel polymeric organic mixed ionic-electronic conductor as the core channel material to achieve dual-modal synaptic learning/memory behaviors at different operating current densities via the formation of an electric double layer and the reversible ion doping.

View Article and Find Full Text PDF

Janus materials, a novel class of materials with two faces of different chemical compositions and electronic polarities, offer significant potential for various applications with catalytic reactions, chemical sensing, and optical or electronic responses. A key aspect for such functionalities is face-dependent electronic bipolarity, which is usually limited by the chemical distinction of terminated surfaces and has not been exploited in the semiconducting regime. Here, it is showed that a Janus and Kagome van der Waals (vdW) material NbTeI has ferroelectric-like coherent stacking of the Janus layers and hosts strong electronic bipolar states in the semiconducting regime.

View Article and Find Full Text PDF

All-Optically Controlled Memristive Device Based on CuO/TiO Heterostructure Toward Neuromorphic Visual System.

Research (Wash D C)

January 2025

Key Laboratory for UV Light-Emitting Materials and Technology (Ministry of Education), College of Physics, Northeast Normal University, Changchun, China.

The optoelectronic memristor integrates the multifunctionalities of image sensing, storage, and processing, which has been considered as the leading candidate to construct novel neuromorphic visual system. In particular, memristive materials with all-optical modulation and complementary metal oxide semiconductor (CMOS) compatibility are highly desired for energy-efficient image perception. As a p-type oxide material, CuO exhibits outstanding theoretical photoelectric conversion efficiency and broadband photoresponse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!