A balanced dielectric resonator filtering power divider with isolation performance is proposed. By using the coupling of the TE111y modes between three rectangle dielectric resonators, combined with balanced feed structures, the differential-mode filtering and power dividing functions, as well as the common-mode suppression were achieved effectively. Additionally, by technically utilizing the hollow structure of the stacked substrates, isolation resistor structures are introduced at the two output ports to improve the isolation level of the power divider. It can solve the problem of traditional metal-cavity dielectric resonator filter power dividers being unable to add isolation structures due to structural reasons. Compared with the reported dielectric resonator filtering power dividers, the proposed one has the characters of a lower profile and high isolation. For demonstration, one dielectric resonator filtering power divider was fabricated and measured at 11.65 GHz with the profile of 0.66 λ and an isolation higher than 15 dB. The simulation results are in good agreement with the measured results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/mi16010088 | DOI Listing |
Polymers (Basel)
January 2025
Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan.
Transitions seen in the electric properties of water-absorbable poly(2,5-benzimidazole) (ABPBI) films were confirmed by electric conductivity, dielectric constant, and time-domain nuclear magnetic resonance (NMR) measurements. The electric resistance of the films was measured at room temperature using a high-resistance meter, and the dielectric constant at room temperature was measured using an LCR meter in the frequency range of 90 Hz to 8 MHz. The water absorption ratio at equilibrium absorption for the films was 37%, which corresponded to a volume fraction of water of 0.
View Article and Find Full Text PDFSensors (Basel)
January 2025
University of Zagreb Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia.
This paper introduces a novel method for measuring the dielectric permittivity of materials within the microwave and millimeter wave frequency ranges. The proposed approach, classified as a guided wave transmission system, employs a periodic transmission line structure characterized by mirror/glide symmetry. The dielectric permittivity is deduced by measuring the transmission properties of such structure when presence of the dielectric material breaks the inherent symmetry of the structure and consequently introduce a stopband in propagation characteristic.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland.
A review of natural materials that exhibit negative permittivity or permeability, including gaseous plasma, metals, superconductors, and ferromagnetic materials, is presented. It is shown that samples made of such materials can store large amount of the electric (magnetic) energy and create plasmonic resonators for certain values of permittivity, permeability, and dimensions. The electric and the magnetic plasmon resonances in spherical samples made of such materials are analyzed using rigorous electrodynamic methods, and the results of the analysis are compared to experimental data and to results obtained with other methods.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
China Building Materials Academy, Beijing 100024, China.
xTiO-(1-x)SiO (x = 2.9~8.2 mol%) glass specimens were synthesized using the flame hydrolysis technique.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Information Science and Technology, Nantong University, Nantong 226019, China.
A balanced dielectric resonator filtering power divider with isolation performance is proposed. By using the coupling of the TE111y modes between three rectangle dielectric resonators, combined with balanced feed structures, the differential-mode filtering and power dividing functions, as well as the common-mode suppression were achieved effectively. Additionally, by technically utilizing the hollow structure of the stacked substrates, isolation resistor structures are introduced at the two output ports to improve the isolation level of the power divider.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!