Microfluidics and biochip technologies continue to play a key role in driving innovation across biomedical, environmental and engineering disciplines [...].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/mi16010077 | DOI Listing |
Micromachines (Basel)
January 2025
Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Microfluidics and biochip technologies continue to play a key role in driving innovation across biomedical, environmental and engineering disciplines [...
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan.
The development of bionic organ-on-a-chip technology relies heavily on advancements in in situ sensors and biochip packaging. By integrating precise biological and fluid condition sensing with microfluidics and electronic components, long-term dynamic closed-loop culture systems can be achieved. This study aims to develop biocompatible heterogeneous packaging and laser surface modification techniques to enable the encapsulation of electronic components while minimizing their impact on fluid dynamics.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Innovative Laser Processing Group, Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Ibaraki, Japan.
Microfluidic sensors incorporated onto chips allow sensor miniaturization and high-throughput analyses for point-of-care or non-clinical analytical tools. Three-dimensional (3D) printing based on femtosecond laser direct writing (fs-LDW) is useful for creating 3D microstructures with high spatial resolution because the structures are printed in 3D space along a designated laser light path. High-performance biochips can be fabricated using the 'ship-in-a-bottle' integration technique, in which functional microcomponents or biomimetic structures are embedded inside closed microchannels using fs-LDW.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
College of Engineering, Design, and Physical Sciences, Brunel University London, Uxbridge UB8 3PH, UK.
The ability to control and manipulate biological fluids within microchannels is a fundamental challenge in biological diagnosis and pharmaceutical analyses, particularly when buffers with very high ionic strength are used. In this study, we investigate the numerical and experimental study of fluidic biochips driven by ac electrothermal flow for controlling and manipulating biological samples inside a microchannel, e.g.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
Organ-on-a-chip culture systems using human organ tissues provide invaluable preclinical insights into systemic functions . This study aimed to develop a novel human testicular tissue chip within a microfluidic device employing computer-aided design software and photolithography technology. Polydimethylsiloxane was used as the primary material to ensure marked gas permeability and no biotoxicity, enabling effective mimicry of the testicular microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!