Impact of Vein Wall Hyperelasticity and Blood Flow Turbulence on Hemodynamic Parameters in the Inferior Vena Cava with a Filter.

Micromachines (Basel)

Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

Published: December 2024

Inferior vena cava (IVC) filters are vital in preventing pulmonary embolism (PE) by trapping large blood clots, especially in patients unsuitable for anticoagulation. In this study, the accuracy of two common simplifying assumptions in numerical studies of IVC filters-the rigid wall assumption and the laminar flow model-is examined, contrasting them with more realistic hyperelastic wall and turbulent flow models. Using fluid-structure interaction (FSI) and computational fluid dynamics (CFD) techniques, the investigation focuses on three hemodynamic parameters: time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT). Simulations are conducted with varying sizes of clots captured in the filter. The findings show that, in regions of high wall shear stress, the rigid wall model predicted higher TAWSS values, suggesting an increased disease risk compared to the hyperelastic model. However, the laminar and turbulent flow models did not show significant differences in TAWSS predictions. Conversely, in areas of low wall shear stress, the rigid wall model indicated lower OSI and RRT, hinting at a reduced risk compared to the hyperelastic model, with this discrepancy being more evident with larger clots. While the predictions for OSI and TAWSS were closely aligned for both laminar and turbulent flows, divergences in RRT predictions became apparent, especially in scenarios with very large clots.

Download full-text PDF

Source
http://dx.doi.org/10.3390/mi16010051DOI Listing

Publication Analysis

Top Keywords

rigid wall
12
wall shear
12
shear stress
12
wall
8
hemodynamic parameters
8
inferior vena
8
vena cava
8
turbulent flow
8
flow models
8
stress rigid
8

Similar Publications

This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.

View Article and Find Full Text PDF

Impact of Vein Wall Hyperelasticity and Blood Flow Turbulence on Hemodynamic Parameters in the Inferior Vena Cava with a Filter.

Micromachines (Basel)

December 2024

Department of Cardiovascular Medicine, Heart, Vascular & Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA.

Inferior vena cava (IVC) filters are vital in preventing pulmonary embolism (PE) by trapping large blood clots, especially in patients unsuitable for anticoagulation. In this study, the accuracy of two common simplifying assumptions in numerical studies of IVC filters-the rigid wall assumption and the laminar flow model-is examined, contrasting them with more realistic hyperelastic wall and turbulent flow models. Using fluid-structure interaction (FSI) and computational fluid dynamics (CFD) techniques, the investigation focuses on three hemodynamic parameters: time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and relative residence time (RRT).

View Article and Find Full Text PDF

Therapeutic rigid bronchoscopy for endobronchial glomus tumors: a case series.

BMC Pulm Med

January 2025

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

Background: Glomus tumors (GTs) are rare, comprising only 2% of all soft tissue tumors. Pulmonary GTs are exceptionally rare, with fewer than 80 cases reported to date. Little is known about the therapeutic outcomes of rigid bronchoscopy for endobronchial GT.

View Article and Find Full Text PDF

Eight patients with inflammatory myofibroblastic tumor treated with rigid bronchoscopy.

BMC Pulm Med

January 2025

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

Background: Pulmonary inflammatory myofibroblastic tumor (IMT) accounts for 0.04-0.7% of all lung tumors, and endobronchial IMT accounts for only 10% of all pulmonary IMTs.

View Article and Find Full Text PDF

In recent years, attempts were made to develop biomaterials using synthetic and natural polymers to induce osteogenesis of human mesenchymal stem cells (hMSCs). Poly(ε-caprolactone) (PCL) is one of the few synthetic polymers with the potential to differentiate hMSCs to bone. However, its potential is limited, attributed to its low strength; its fast crystallization rate also compromises its dimensional stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!