The development of bionic organ-on-a-chip technology relies heavily on advancements in in situ sensors and biochip packaging. By integrating precise biological and fluid condition sensing with microfluidics and electronic components, long-term dynamic closed-loop culture systems can be achieved. This study aims to develop biocompatible heterogeneous packaging and laser surface modification techniques to enable the encapsulation of electronic components while minimizing their impact on fluid dynamics. Using a kidney-on-a-chip as a case study, a non-toxic packaging process and fluid interface control methods have been successfully developed. Experimentally, miniature pressure sensors and control circuit boards were encapsulated using parylene-C, a biocompatible material, to isolate biochemical fluids from electronic components. Ultraviolet laser processing was employed to fabricate structures on parylene-C. The results demonstrate that through precise control of processing parameters, the wettability of the material can be tuned freely within a contact angle range of 60° to 110°. Morphological observations and MTT assays confirmed that the material and the processing methods do not induce cytotoxicity. This technology will facilitate the packaging of various miniature electronic components and biochips in the future. Furthermore, laser processing enables rapid and precise control of interface conditions across different regions within the chip, demonstrating a high potential for customized mass production of biochips. The proposed innovations provide a solution for in situ sensing in organ-on-a-chip systems and advanced biochip packaging. We believe that the development of this technology is a critical step toward realizing the concept of "organ twin".

Download full-text PDF

Source
http://dx.doi.org/10.3390/mi16010046DOI Listing

Publication Analysis

Top Keywords

electronic components
16
biocompatible heterogeneous
8
heterogeneous packaging
8
fluid interface
8
interface control
8
biochip packaging
8
laser processing
8
precise control
8
packaging
6
control
5

Similar Publications

Renal Tubular Acidosis: Core Curriculum 2025.

Am J Kidney Dis

January 2025

Division of Nephrology and Hypertension, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

Renal tubular acidoses (RTAs) are a subset of non-anion gap metabolic acidoses that result from complex disturbances in renal acid excretion. Net acid excretion is primarily accomplished through the reclamation of sodium bicarbonate and the buffering of secreted protons with ammonia or dibasic phosphate, all of which require a series of highly complex and coordinated processes along the renal tubule. Flaws in any of these components lead to the development of metabolic acidosis and/or a failure to compensate fully for other systemic acidoses.

View Article and Find Full Text PDF

The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.

View Article and Find Full Text PDF

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.

View Article and Find Full Text PDF

This study aims to establish a thyristor-controlled series compensator (TCSC) equipped with a proportional integral derivative with filter (PIDF) controller by using a futuristic optimisation technique called evolutionary programming sine cosine algorithm (EPSCA) with multiobjective function (MOF). EPSCA is developed by merging evolutionary programming and the sine cosine algorithm. Three stability indicators, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!