AI Article Synopsis

Article Abstract

MEMS acoustic sensors are a type of physical quantity sensor based on MEMS manufacturing technology for detecting sound waves. They utilize various sensitive structures such as thin films, cantilever beams, or cilia to collect acoustic energy, and use certain transduction principles to read out the generated strain, thereby obtaining the targeted acoustic signal's information, such as its intensity, direction, and distribution. Due to their advantages in miniaturization, low power consumption, high precision, high consistency, high repeatability, high reliability, and ease of integration, MEMS acoustic sensors are widely applied in many areas, such as consumer electronics, industrial perception, military equipment, and health monitoring. Through different sensing mechanisms, they can be used to detect sound energy density, acoustic pressure distribution, and sound wave direction. This article focuses on piezoelectric, piezoresistive, capacitive, and optical MEMS acoustic sensors, showcasing their development in recent years, as well as innovations in their structure, process, and design methods. Then, this review compares the performance of devices with similar working principles. MEMS acoustic sensors have been increasingly widely applied in various fields, including traditional advantage areas such as microphones, stethoscopes, hydrophones, and ultrasound imaging, and cutting-edge fields such as biomedical wearable and implantable devices.

Download full-text PDF

Source
http://dx.doi.org/10.3390/mi16010043DOI Listing

Publication Analysis

Top Keywords

mems acoustic
20
acoustic sensors
20
acoustic
7
mems
6
sensors
5
sensors charting
4
charting path
4
path real-world
4
real-world applications
4
applications mems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!