The safety of power batteries in the automotive industry is of paramount importance and cannot be emphasized enough. As lithium-ion battery technology continues to evolve, the energy density of these batteries increases, thereby amplifying the potential risks linked to battery failures. This study explores pivotal safety challenges within the electric vehicle sector, with a particular focus on thermal runaway and gas emissions originating from lithium-ion batteries. We offer a non-dispersive infrared (NDIR) gas sensor designed to efficiently monitor battery emissions. Notably, carbon dioxide (CO) gas sensors are emphasized for their ability to enhance early-warning systems, facilitating the timely detection of potential issues and, in turn, improving the overall safety standards of electric vehicles. In this study, we introduce a novel CO gas sensor based on the advanced pyroelectric single-crystal lead niobium magnesium titanate (PMNT), which exhibits exceptionally high pyroelectric properties compared to commercially available materials, such as lithium tantalate single crystals and lead zirconate titanate ceramics. The specific detection rate of PMNT single-crystal pyroelectric infrared detectors is more than four times higher than lithium tantalate single-crystal infrared detectors. The PMNT single-crystal NDIR gas detector is used to monitor thermal runaway in lithium-ion batteries, enabling the rapid and highly accurate detection of gases released by the battery. This research offers an in-depth exploration of real-time monitoring for power battery safety, utilizing the cutting-edge pyroelectric single-crystal gas sensor. Beyond providing valuable insights, the study also presents practical recommendations for mitigating the risks of thermal runaway in lithium-ion batteries, with a particular emphasis on the development of effective warning systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/mi16010036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!