Three-dimensional Mechatronic Integrated Devices (3D-MIDs) combine mechanical and electrical functions, enabling significant component miniaturization and enhanced functionality. However, their application in high-temperature environments remains limited due to material challenges. Existing research highlights the thermal stability of ceramic substrates; yet, their reliability under high-stress and complex mechanical loading conditions remains a challenge. In this study, 3D-MID components were fabricated using stereolithography (SLA) 3D-printing technology, and the feasibility of circuit miniaturization on high-temperature-resistant resin substrates was explored. Additionally, the influence of laser parameters on resistance values was analyzed using the Response Surface Methodology (RSM). The results demonstrate that SLA 3D-printing achieves substrates with low surface roughness, enabling the precise formation of fine features. Electric circuits are successfully formed on substrates printed with resin mixed with Laser Direct Structuring (LDS) additives, following laser structuring and metallization processes, with a minimum conductor spacing of 150 µm. Furthermore, through the integration of through-holes (vias) and the use of smaller package chips, such as Ball Grid Array (BGA) and Quad Flat No-lead (QFN), the circuits achieve further miniaturization and establish reliable electrical connections via soldering. Taken together, our results demonstrate that thermoset plastics serve as substrates for 3D-MID components, broadening the application scope of 3D-MID technology and providing a framework for circuit miniaturization on SLA-printed substrates.

Download full-text PDF

Source
http://dx.doi.org/10.3390/mi16010016DOI Listing

Publication Analysis

Top Keywords

mechatronic integrated
8
3d-mid components
8
sla 3d-printing
8
circuit miniaturization
8
substrates
6
miniaturization
5
miniaturization potential
4
potential additive-manufactured
4
additive-manufactured mechatronic
4
integrated device
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!