In this paper, AlGaN/GaN high electron mobility transistors (HEMTs) with different thicknesses of unintentional doping GaN (UID-GaN) channels were compared and discussed. In order to discuss the effect of different thicknesses of the UID-GaN layer on iron-doped tails, both AlGaN/GaN HEMTs share the same 200 nm GaN buffer layer with an Fe-doped concentration of 8 × 10 cm. Due to the different thicknesses of the UID-GaN layer, the concentration of Fe trails reaching the two-dimensional electron gas (2DEG) varies. The breakdown voltage (Vbr) increases with the high concentration of Fe-doped in GaN buffer layer. However, the mobility of the low concentration of the Fe-doped tail is higher than that of the high concentration of the Fe-doped tail. Therefore, the effect of different thicknesses of UID-GaN on the DC and radio frequency (RF) performance of the device needs to be verified. It provides a reference to the epitaxial design for high-performance GaN HEMTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/mi16010001 | DOI Listing |
Micromachines (Basel)
December 2024
School of Microelectronics, Xidian University, Xi'an 710071, China.
In this paper, AlGaN/GaN high electron mobility transistors (HEMTs) with different thicknesses of unintentional doping GaN (UID-GaN) channels were compared and discussed. In order to discuss the effect of different thicknesses of the UID-GaN layer on iron-doped tails, both AlGaN/GaN HEMTs share the same 200 nm GaN buffer layer with an Fe-doped concentration of 8 × 10 cm. Due to the different thicknesses of the UID-GaN layer, the concentration of Fe trails reaching the two-dimensional electron gas (2DEG) varies.
View Article and Find Full Text PDFMicromachines (Basel)
October 2021
High-Frequency High-Voltage Device and Integrated Circuits Center, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China.
This work investigates the transient characteristics of an AlGaN/GaN lateral Schottky barrier diode (SBD) and its recovery process with a dedicated dynamic measurement system. Both static and dynamic characteristics were measured, analyzed with the consideration of acceptor/donor traps in the C-doped buffer and GaN channel, and verified by Silvaco TCAD (technology computer aided design) simulations. The energy band, electric field, and electron concentration were monitored in the transient simulation to study the origin of the current collapse in the SBD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!