The Genetic Determinants of Resistance to Bacteriocins Produced by Lactic Acid Bacteria.

Genes (Basel)

Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland.

Published: January 2025

AI Article Synopsis

Article Abstract

Background: is a Gram-positive bacterium responsible for listeriosis, a serious foodborne disease that can lead to serious health complications. Pregnant women, newborns, the elderly, and patients with weakened immune systems are particularly susceptible to infection. Due to the ability of to survive in extreme environmental conditions, such as low temperatures, high salinity, and acidity, this bacterium poses a serious threat to food production plants and is particularly difficult to eliminate from these plants. One of the promising solutions to reduce the presence of this bacterium in food products is bacteriocins as natural control agents. These are substances with antibacterial activity produced by other bacteria, mainly lactic acid bacteria (LAB), which can effectively inhibit the development of pathogens such as . The use of bacteriocins in the food industry is beneficial due to their natural origin, specificity of action, and consumer safety. However, the problem of resistance to these substances exists.

Results: This review focuses on the mechanisms of bacteriocin resistance, such as modifications of bacteriocin docking receptors, changes in the structure of the cell wall and membrane, and the occurrence of cross-resistance to different bacteriocins. Genetic factors determining these mechanisms and strategies to cope with the problem of resistance are also presented.

Conclusions: Research on this issue is crucial for developing effective preventive methods that will enable the safe and long-term use of bacteriocins in food production.

Download full-text PDF

Source
http://dx.doi.org/10.3390/genes16010050DOI Listing

Publication Analysis

Top Keywords

lactic acid
8
acid bacteria
8
food production
8
bacteriocins food
8
problem resistance
8
bacteriocins
5
genetic determinants
4
resistance
4
determinants resistance
4
resistance bacteriocins
4

Similar Publications

There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.

View Article and Find Full Text PDF

Purpose: This research aimed to develop and assess a Lipiodol Pickering emulsion containing anti-Programmed cell Death Ligand 1 (PD-L1) antibodies through in vitro experiments.

Materials And Methods: The emulsion was created by combining Lipiodol with poly (lactic-co-glycolic acid) (PLGA) nanoparticles and anti-PD-L1 antibodies. Confocal laser microscopy was used to evaluate the encapsulation of the antibodies within the Pickering emulsion.

View Article and Find Full Text PDF

Lignin-coordinated niobium-based catalyst for the efficient conversion of industrial lignin in choline chloride-lactic acid integrated with ethanol deep eutectic solvent.

Int J Biol Macromol

January 2025

Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:

Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.

View Article and Find Full Text PDF

Amphotericin B Encapsulation in Polymeric Nanoparticles: Toxicity Insights via Cells and Zebrafish Embryo Testing.

Pharmaceutics

January 2025

Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos (PPG-PTFM), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil.

Amphotericin B (AmB) is a commonly utilized antifungal agent, which is also recommended for the treatment of certain neglected tropical diseases, including leishmaniasis. However, its clinical application is constrained because of its poor oral bioavailability and adverse effects, prompting the investigation of alternative drug delivery systems. Polymeric nanoparticles (PNPs) have gained attention as a potential drug delivery vehicle, providing advantages such as sustained release and enhanced bioavailability, and could have potential as AmB carriers.

View Article and Find Full Text PDF

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!