A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease. This suppression, effectively self-suppression, occurs in the context of the global inhibition of the cellular cap-dependent protein synthesis as a consequence of the neuronal integrated stress response (ISR) elicited by AβPP-derived intraneuronal Aβ (Aβ; hence self-suppression) upon reaching certain levels. Concurrently with the suppression of the AβPP proteolytic pathway, the neuronal ISR activates in human neurons, but not in mouse neurons, the powerful AD-driving pathway generating the C99 fragment of AβPP independently of AβPP. The present study describes molecular mechanisms potentially involved in these phenomena, propounds novel approaches to generate transgenic animal models of AD, advocates for the utilization of human neuronal cells-based models of the disease, makes verifiable predictions, suggests experiments designed to validate the proposed concept, and considers its potential research and therapeutic implications. Remarkably, it opens up the possibility that the conventional production of AβPP, BACE enzymes, and γ-secretase components is also suppressed under the neuronal ISR conditions in AD-affected neurons, resulting in the dyshomeostasis of AβPP. It follows that whereas conventional AD is triggered by AβPP-derived Aβ accumulated to the ISR-eliciting levels, the disease, in its both conventional and unconventional (triggered by the neuronal ISR-eliciting stressors distinct from Aβ) forms, is driven not (or not only) by Aβ produced in the AβPP-independent pathway, as we proposed previously, but mainly, possibly exclusively, by the C99 fragment generated independently of AβPP and not cleaved at the γ-site due to the neuronal ISR-caused deficiency of γ-secretase (apparently, the AD-driving "substance X" predicted in our previous study), a paradigm consistent with a dictum by George Perry that Aβ is "central but not causative" in AD. The proposed therapeutic strategies would not only deplete the driver of the disease and abrogate the AβPP-independent production of C99 but also reverse the neuronal ISR and ameliorate the AβPP dyshomeostasis, a potentially significant contributor to AD pathology.

Download full-text PDF

Source
http://dx.doi.org/10.3390/genes16010046DOI Listing

Publication Analysis

Top Keywords

neuronal isr
12
production amyloid-β
8
proteolytic pathway
8
discontinued severely
8
severely suppressed
8
8
aβpp
8
ad-affected neurons
8
aβpp-derived aβ
8
c99 fragment
8

Similar Publications

A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease.

View Article and Find Full Text PDF

A neurodegenerative cellular stress response linked to dark microglia and toxic lipid secretion.

Neuron

December 2024

Neuroscience Initiative, Advanced Science Research Center, The City University of New York (CUNY) Graduate Center, New York, NY 10031, USA; Graduate Program in Biology, CUNY Graduate Center, New York, NY 10016, USA; Graduate Program in Biochemistry, CUNY Graduate Center, New York, NY 10016, USA. Electronic address:

The brain's primary immune cells, microglia, are a leading causal cell type in Alzheimer's disease (AD). Yet, the mechanisms by which microglia can drive neurodegeneration remain unresolved. Here, we discover that a conserved stress signaling pathway, the integrated stress response (ISR), characterizes a microglia subset with neurodegenerative outcomes.

View Article and Find Full Text PDF

eEF2K regulates pain through translational control of BDNF.

Mol Cell

December 2024

Department of Anesthesiology, University of Wisconsin, Madison, Madison, WI, USA. Electronic address:

mRNA translation is integral to pain, yet the key regulatory factors and their target mRNAs are unclear. Here, we uncover a mechanism that bridges noxious insults to multiple phases of translational control in murine sensory neurons. We find that a painful cue triggers repression of peptide chain elongation through activation of elongation factor 2 kinase (eEF2K).

View Article and Find Full Text PDF

SSVEP modulation via non-volitional neurofeedback: anproof of concept.

J Neural Eng

December 2024

CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.

Neuronal oscillatory patterns are believed to underpin multiple cognitive mechanisms. Accordingly, compromised oscillatory dynamics were shown to be associated with neuropsychiatric conditions. Therefore, the possibility of modulating, or controlling, oscillatory components of brain activity as a therapeutic approach has emerged.

View Article and Find Full Text PDF

Dysfunctional RNA binding protein induced neurodegeneration is attenuated by inhibition of the integrated stress response.

Biochim Biophys Acta Mol Basis Dis

January 2025

Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK S7K-0M7, Canada; Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK S7K 0M7, Canada; Department of Medicine, Neurology Division, University of Saskatchewan, Saskatoon, SK S7N-5E5, Canada; Department of Health Sciences, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N-5E5, Canada; Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N-5E5, Canada. Electronic address:

Dysfunction of the RNA binding protein heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) contributes to neurodegeneration, the primary cause of permanent disability in multiple sclerosis (MS). To better understand the role of hnRNP A1 dysfunction in the pathogenesis of neurodegeneration, we utilized optogenetics-driven hnRNP A1 clustering to model its dysfunction in neuron-like differentiated Neuro-2A cells. hnRNP A1 clustering activates the integrated stress response (ISR) and results in a neurodegenerative phenotype marked by decreased neuronal protein translation and neurite loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!