TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses.

Biomolecules

Graduate Program of Biosystems, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-045, Brazil.

Published: January 2025

AI Article Synopsis

Article Abstract

TMPRSS2, a human transmembrane protease enzyme, plays a crucial role in the spread of certain viruses, including influenza and coronaviruses. This enzyme promotes viral infection by cleaving viral glycoproteins, which helps viruses like SARS-CoV-2 and influenza A enter cells more effectively. Genetic differences in TMPRSS2 may affect people's susceptibility to COVID-19, underscoring the need for studies that consider diverse populations. Beyond infectious diseases, TMPRSS2 has also been linked to some cancers, suggesting it could be a valuable target for drug development. This review provides a summary of TMPRSS2 inhibitors currently under study, with some already in clinical trials to test their effectiveness against viral infections. As we uncover more about TMPRSS2's role in pathogenesis, it could open new doors for therapies to combat future outbreaks.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom15010075DOI Listing

Publication Analysis

Top Keywords

influenza coronaviruses
8
tmprss2
5
tmprss2 key
4
key player
4
viral
4
player viral
4
viral pathogenesis
4
pathogenesis influenza
4
coronaviruses tmprss2
4
tmprss2 human
4

Similar Publications

Treatment options for viral infections are limited and viruses have proven adept at evolving resistance to many existing therapies, highlighting a significant vulnerability in our defenses. In response to this challenge, we explored the modulation of cellular RNA metabolic processes as an alternative paradigm to antiviral development. Previously, the small molecule 5342191 was identified as a potent inhibitor of HIV-1 replication by altering viral RNA accumulation at doses that minimally affect host gene expression.

View Article and Find Full Text PDF

Human seasonal coronaviruses (hCoVs) are a group of viruses that affect the upper respiratory tract. While seasonal patterns and the annual variability of predominant hCoV species are well-documented, their genetic and species diversity in St. Petersburg and across Russia remains largely unexplored.

View Article and Find Full Text PDF

Background: Respiratory viral infections are a major public health challenge and the most diagnosed medical condition, particularly for individuals living in close proximity, like military personnel. We compared the sensitivity and specificity of the Biomeme Franklin and Truelab RT-PCR thermocyclers to determine which platform is more sensitive and specific at detecting SARS-CoV-2 and influenza A and B viruses.

Methodology: RNA extracted from nasopharyngeal swabs of infected and uninfected individuals was tested on the Biomeme Franklin at Lackland and the Truelab at Wright Patterson Air Force bases.

View Article and Find Full Text PDF

Acute respiratory infections are a significant challenge in primary care and hospital settings. Viruses are the most common etiology and the overlapping symptomatology among major respiratory viruses, such as influenza, severe acute respiratory syndrome coronavirus 2, and respiratory syncytial virus, requires the use of diagnostic tests that deliver early and accurate results. With the increasing availability of rapid antigen tests (RATS), it is tempting to prefer them over polymerase chain reaction (PCR) tests.

View Article and Find Full Text PDF

TMPRSS2 as a Key Player in Viral Pathogenesis: Influenza and Coronaviruses.

Biomolecules

January 2025

Graduate Program of Biosystems, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-045, Brazil.

TMPRSS2, a human transmembrane protease enzyme, plays a crucial role in the spread of certain viruses, including influenza and coronaviruses. This enzyme promotes viral infection by cleaving viral glycoproteins, which helps viruses like SARS-CoV-2 and influenza A enter cells more effectively. Genetic differences in TMPRSS2 may affect people's susceptibility to COVID-19, underscoring the need for studies that consider diverse populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!