Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. Neoadjuvant chemotherapy (NAC) has become a standard treatment for patients scheduled for surgical resection, but the high rate of postoperative recurrence is a critical problem. Optimization of NAC is desirable to reduce postoperative recurrence and achieve long-term survival. However, if a patient's general condition deteriorates due to NAC toxicity, surgical outcomes may be compromised. Therefore, we aimed to identify drug(s) that can be used in combination with gemcitabine (GEM), a drug widely used for the treatment of PDAC, to inhibit distant metastatic recurrence, particularly after surgery. After several screening steps, ML210, a low molecular weight chemical, was found to suppress the epithelial-mesenchymal transition (EMT) in PDAC cells in combination with GEM. Specifically, low dose ML210 in combination with GEM was sufficient for cell migration without apparent toxicity or cell death. Mechanistically, ML210, which was developed as a glutathione peroxidase 4 (GPX4) inhibitor to induce lipid peroxidation, increased the oxidized lipid concentrations in PDAC cells. The oxidization of the cell membrane lipids may suppress EMT, including cell migration. Since EMT is a major malignant phenotype of PDAC, our findings may lead to the advancement of PDAC therapy, especially in the prevention of postoperative recurrence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/biom15010070 | DOI Listing |
Br J Cancer
January 2025
Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis, primarily due to its immunosuppressive tumor microenvironment (TME), which contributes to treatment resistance. Recent research shows that the microbiome, including microbial communities in the oral cavity, gut, bile duct, and intratumoral environments, plays a key role in PDAC development, with microbial imbalances (dysbiosis) promoting inflammation, cancer progression, therapy resistance, and treatment side effects. Microbial metabolites can also affect immune cells, especially natural killer (NK) cells, which are vital for tumor surveillance, therapy response and treatment-related side effects.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor outcomes due to frequent recurrence, metastasis, and resistance to treatment. A major contributor to this resistance is the tumor's ability to suppress natural killer (NK) cells, which are key players in the immune system's fight against cancer. In PDAC, the tumor microenvironment (TME) creates conditions that impair NK cell function, including reduced proliferation, weakened cytotoxicity, and limited tumor infiltration.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in the world. Neoadjuvant chemotherapy (NAC) has become a standard treatment for patients scheduled for surgical resection, but the high rate of postoperative recurrence is a critical problem. Optimization of NAC is desirable to reduce postoperative recurrence and achieve long-term survival.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA.
: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial-mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!