Endometriosis is a chronic, estrogen-dependent disorder associated with the presence of endometrial cells mainly in the pelvic cavity, causing systemic immune inflammation, infertility, epigenetic dysregulation of differential DNA methylation, coelomic metaplasia, and pain. It affects approximately 10-12% of women. Despite decades of research, full pathophysiology, a diagnostic roadmap, and clinical management strategies for endometriosis are not yet fully elucidated. Cell-free DNA (Cf-DNA) in the peripheral blood of diseased and healthy individuals was discovered in the 1950s. Quantifying peripheral Cf-DNA and the specific differential methylation of a group of genes have been proposed as potential non-invasive diagnostic biomarkers for somatic and constitutional genetics and for various other pathological disorders. In this study, we investigated the Cf-DNA levels of 78 young women, 38 of whom had endometriosis confirmed via laparoscopy and 40 of whom were healthy. We found a significant difference between the two groups when Cf-DNA was quantified, with 3.9 times more Cf-DNA in the serum of women with endometriosis. We also identified nine target genes potentially involved in the pathogenesis of endometriosis, with a different methylation profile between the two groups. Our data suggest that the combination of cell-free DNA quantification and the assessment of the epigenetic signature of differential methylation of nine genes can be proposed as a non-invasive predictive and diagnostic test for endometriosis.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom15010069DOI Listing

Publication Analysis

Top Keywords

differential methylation
12
cell-free dna
8
genes proposed
8
women endometriosis
8
endometriosis
7
methylation
5
cf-dna
5
quantification free
4
free circulating
4
dna
4

Similar Publications

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Placental PFAS concentrations are associated with perturbations of placental DNA methylation.

Environ Pollut

January 2025

Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR; Arkansas Children's Nutrition Center, Little Rock, AR.

The placenta is crucial for fetal development, is affected by PFAS toxicity, and evidence is accumulating that gestational PFAS perturb the epigenetic activity of the placenta. Gestational PFAS exposure can adversely affect offspring, yet individual and cumulative impacts of PFAS on the placental epigenome remain underexplored. Here, we conducted an epigenome-wide association study (EWAS) to examine the relationships between placental PFAS levels and DNA methylation in a cohort of mother-infant dyads in Arkansas (N=151).

View Article and Find Full Text PDF

This work aims to determine the mechanism of the photomechanical response of poly(Methyl methacrylate) polymer doped with the photo-isomerizable dye Disperse Red 1 using the non-isomerizable dye Disperse Orange 11 as a control to isolate photoisomerization. Samples are free-standing thin films with thickness that is small compared with the optical skin depth to assure uniform illumination and photomechanical response throughout their volume, which differentiates these studies from most others. Polarization-dependent measurements of the photomechanical stress response are used to deconvolute the contributions of angular hole burning, molecular reorientation and photothermal heating.

View Article and Find Full Text PDF

Loss of Affects m6A Modification but Not Semen Characteristics in Bull Spermatozoa.

Int J Mol Sci

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010070, China.

N6-methyladenosine (m6A) modification is a key methylation modification involved in reproductive processes. gene editing (MT) in cattle is known to enhance muscle mass and productivity. However, the changes in m6A modification in MT bull sperm remain poorly understood.

View Article and Find Full Text PDF

A Multi-Omics Analysis of a Mitophagy-Related Signature in Pan-Cancer.

Int J Mol Sci

January 2025

Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus.

Mitophagy, an essential process within cellular autophagy, has a critical role in regulating key cellular functions such as reproduction, metabolism, and apoptosis. Its involvement in tumor development is complex and influenced by the cellular environment. Here, we conduct a comprehensive analysis of a mitophagy-related gene signature, composed of , , , , , , and , across various cancer types, revealing significant differential expression patterns associated with molecular subtypes, stages, and patient outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!