The emergence of multidrug-resistant hypervirulent (hvKp) has made it difficult to treat and control infections caused by this bacterium. Previously, the therapeutic effectiveness of phage-encoded depolymerase Dep_kpv74 in a mouse model of -induced thigh soft tissue infection was reported. In this study, the effect of Dep_kpv74 on blood parameters in mice, the proliferation and subpopulation composition of spleen lymphocytes, and the activity and stability of the enzyme at different pH and temperatures were further explored. The stability tests showed that Dep_kpv74 remained active in the temperature range from 8 °C to 55 °C. The optimal pH value for maintaining the activity of Dep_kpv74 ranged from 5.0 to 9.0. The depolymerase was detected in the blood, spleen, and lungs of mice 10 min after intraperitoneal administration, reaching maximum activity values after 1-3 h and maintaining activity a day after administration. The introduction of Dep_kpv74 at the therapeutic dose (10 μg/mouse) or at a 10-fold higher dose did not lead to reliable changes in bloodstream cell content compared with the reference values of intact mice. The biochemical results of the studies indicated that Dep_kpv74 did not exert any toxic effects on liver and kidney functions. The results of the analysis of lymphocyte proliferative activity demonstrated that Dep_kpv74 depolymerase has a mild immunomodulatory effect. Thus, the results of this study provide one more confirmation that depolymerase Dep_kpv74 is a potential candidate for the treatment of infections caused by hvKp expressing K2 capsular polysaccharides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/antibiotics14010044 | DOI Listing |
Antibiotics (Basel)
January 2025
State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia.
The emergence of multidrug-resistant hypervirulent (hvKp) has made it difficult to treat and control infections caused by this bacterium. Previously, the therapeutic effectiveness of phage-encoded depolymerase Dep_kpv74 in a mouse model of -induced thigh soft tissue infection was reported. In this study, the effect of Dep_kpv74 on blood parameters in mice, the proliferation and subpopulation composition of spleen lymphocytes, and the activity and stability of the enzyme at different pH and temperatures were further explored.
View Article and Find Full Text PDFVirus Res
December 2022
State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, City District Serpukhov, Moscow Region, Russia.
Bacteriophages and phage polysaccharide-degrading enzymes (depolymerases) are garnering attention as possible alternatives to antibiotics. Here, we describe the antimicrobial properties of bacteriophage KpV74 and phage depolymerase Dep_kpv74 specific to the hypervirulent Klebsiella pneumoniae of the K2 capsular type. The depolymerase Dep_kpv74 was identified as a specific glucosidase that cleaved the K2 type capsular polysaccharides of the K.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!