Water treatment technologies have received great attention recently, as water is the most important nutritional element, and animals consume it daily in larger quantities than those of food. The ideal water treatment affects the chemical composition and physical properties of water, having a significant positive impact on the animal's physiology, productivity, and welfare. Studies conducted on water ionization devices for broiler chickens remain limited; therefore, this study was planned to investigate the effect of ionized drinking water on the productive performance, physiological status, and carcass characteristics of broiler chicks. A total of 900 one-day-old broiler chicks were randomly and equally assigned to three groups, each with six replicates (50 birds/replicate). The first group (C) received tap drinking water and served as a control, while the second group (T1) received ionized drinking water from an ionizing device that worked for 1 h/100 L. The third group (T2) received ionized drinking water from an ionizing device that worked for 2 h/100 L. Water analysis for each treatment was performed. Productive traits, such as weekly body weight, feed intake, and water intake, were recorded. Hematological parameters and biochemical constituents were measured according to the reference's description. Furthermore, carcass characteristics, such as carcass weight and dressing percentage, and bacterial count of the intestine, such as Lactobacilli and Coliform counts, were determined. From the results, ionized water (T1 and T2) had a negative ORP, which is often desirable as it suggests the presence of antioxidant properties and lower total dissolved solids (TDSs), heterotrophic plate count (HPC), and algal total count (ATC) than in tap water. The treated chicks showed higher final body weights and better feed conversion rates than the control. Ionized water also improved carcass quality characteristics, such as carcass weight and dressing percentage. T1 and T2 chicks exhibited higher hemoglobin, total protein, globulin, G and M immunoglobulin, and total antioxidant capacity (TAC) levels, as well as lower malondialdehyde (MDA) and low-density lipoprotein (LDL) levels than the control. Furthermore, they had lower pathogenic bacteria counts. Therefore, it is recommended to employ the ionizing approach for broiler chicken drinking water, particularly a 2 h/100 L ionization application, for better animal productivity, health, and welfare.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ani15020229 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758290 | PMC |
Metabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.
View Article and Find Full Text PDFAppl Radiat Isot
January 2025
Service de Protection Radiologique des Armées, 1bis rue du Lieutenant Raoul Batany, 92141, Clamart cedex, France.
A specific goal of the French army is to ensure health protection of soldiers consuming water from overseas operations territories. To do so, the French Defence Radiological Protection Service developed a method to quantify the amount of Ra in water using Ra-Nucfilm discs. Ra analysis is achieved within less than two days and the detection limit, function of adsorption efficiency, ranges from 0.
View Article and Find Full Text PDFViruses
January 2025
Département de Virologie, Institut Pasteur de Dakar, Dakar BP 220, Senegal.
Despite extensive experience with influenza surveillance in humans in Senegal, there is limited knowledge about the actual situation and genetic diversity of avian influenza viruses (AIVs) circulating in the country, hindering control measures and pandemic risk assessment. Therefore, as part of the "One Health" approach to influenza surveillance, we conducted active AIV surveillance in two live bird markets (LBMs) in Dakar to better understand the dynamics and diversity of influenza viruses in Senegal, obtain genetic profiles of circulating AIVs, and assess the risk of emergence of novel strains and their transmission to humans. Cloacal swabs from poultry and environmental samples collected weekly from the two LBMs were screened by RT-qPCR for H5, H7, and H9 AIVs.
View Article and Find Full Text PDFNutrients
January 2025
College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA.
Background/objectives: Urinary fluoride (UF) is the most well-established biomarker for fluoride exposure, and understanding its distribution can inform risk assessment for potential adverse systemic health effects. To our knowledge, this study is the first to report distributions of UF among youth according to sociodemographic factors in a nationally representative United States (US) sample.
Methods: The study included 1191 children aged 6-11 years and 1217 adolescents aged 12-19 years from the National Health and Nutrition Examination Survey (NHANES) 2015-2016.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!