Aquatic training has been integrated into equine rehabilitation and training programs for several decades. While the cardiovascular effects of this training have been explored in previous studies, limited research exists on the locomotor patterns exhibited during the swimming cycle. This study aimed to analyze three distinct swimming strategies, identified by veterinarians, based on the propulsion phases of each limb: (S1) two-beat cycle with lateral overlap, (S2) two-beat cycle with diagonal overlap, and (S3) four-beat cycle. 125 underwater videos from eleven horses accustomed to swimming were examined to quantify the differences in locomotor patterns between these strategies. Initially, a classifier was developed to categorize 125 video segments into four groups (CatA to CatD). The results demonstrated that these categories correspond to specific swimming strategies, with CatA aligning with S1, CatB with S2, and CatC and CatD representing variations of S3. This classification highlights that two key parameters, lateral and diagonal ratios, are indeed effective in distinguishing between the different swimming strategies. Additionally, coordination patterns were analyzed in relation to these swimming strategies. One of the primary findings is the variability in swimming strategies both within and between individual horses. While five horses consistently maintained the same strategy throughout their swimming sessions, six others exhibited variations in their strategy between laps. This suggests that factors such as swimming direction, pauses between laps, and fatigue may influence the selection of swimming strategy. This study offers new insights into the locomotor patterns of horses during aquatic training and has implications for enhancing the design of rehabilitation protocols.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ani15020195 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758662 | PMC |
J Therm Biol
January 2025
China Institute of Sport Science, Beijing, 100061, China. Electronic address:
Objective: This study aimed to evaluate the effects of different cold acclimation strategies on exercise performance in male mice exposed to low-temperature environments.
Methods: Male mice were subjected to five distinct acclimation regimens over 8 weeks: immersion at 10 °C (10 °CI) or 20 °C (20 °CI), swimming at 10 °C (10 °CS), 20 °C (20 °CS), or 34 °C (34 °CS). During the first 2 weeks, the acclimation time progressively decreased from 30 min to 3 min per day, and the water temperatures were lowered from 34 °C to the target levels, followed by 6 weeks of consistent exposure.
Nutrients
January 2025
School of Sport Science, Beijing Sport University, Beijing 100084, China.
Background: Both listening to music during warm-up and consuming caffeine before exercise have been independently shown to enhance athletic performance. However, the potential synergistic effects of combining these strategies remain largely unexplored. To date, only two studies have reported additional benefits to combining music during warm-up with a caffeine dose of 3 mg/kg on taekwondo-specific performance tasks.
View Article and Find Full Text PDFMicroorganisms
December 2024
Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China.
, a parasitic ciliate, causes "white spot disease" in freshwater fish and poses a significant threat to global freshwater aquaculture. Eliminating the free-swimming theront stage from the aquaculture environment is a critical measure for controlling infections. The natural predator of theronts in fish-farming ponds were identified using fluorescent dye-labelled live theronts and quantitative PCR; meanwhile, the zooplankton community composition in the positive ponds of detected by quantitative PCR were analyzed by eDNA metabarcoding assay.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Laboratoire de BioMécanique et BioIngénierie (UMR CNRS 7338), Centre of Excellence for Human and Animal Movement Biomechanics (CoEMoB), Université de Technologie de Compiègne (UTC), Alliance Sorbonne Université, 60200 Compiègne, France.
Aquatic training has been integrated into equine rehabilitation and training programs for several decades. While the cardiovascular effects of this training have been explored in previous studies, limited research exists on the locomotor patterns exhibited during the swimming cycle. This study aimed to analyze three distinct swimming strategies, identified by veterinarians, based on the propulsion phases of each limb: (S1) two-beat cycle with lateral overlap, (S2) two-beat cycle with diagonal overlap, and (S3) four-beat cycle.
View Article and Find Full Text PDFSports Med
January 2025
Aquatics Lab, Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Granada, Spain.
Background: Swimming performance depends on a wide variety of factors; however, the interaction between these factors and their importance varies between events. In sprint events, the characterized pacing underlines its specific development, as swimmers must achieve the highest possible speed while sustaining it to the greatest extent possible.
Objectives: The aim of this review was to identify the key factors underlying sprint swimming performance and to provide in-depth and practical evidence-based information to optimize performance.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!