Studies have demonstrated significant alterations in ovarian oxidative stress levels, ovarian degeneration, and follicular atresia during the broody period in geese. The results of this study showed that during the broody period, geese exhibited degraded ovarian tissues, disrupted follicular development, a thinner granulosa cell layer, and lower levels of ovarian hormones E2, P4, and AMH. Antioxidant activity (GSH, CAT, SOD, T-AOC, and the content of HO) and the mRNA expression levels of antioxidant genes (GPX, SOD-1, SOD-2, CAT, COX-2, and Hsp70) were significantly higher in pre-broody geese compared to laying geese, while the expression of apoptosis-related genes (p53, Caspase-3, and Caspase-9) increased and the anti-apoptotic gene Bcl-2 decreased. Additionally, proteomic analysis identified 703 differentially expressed proteins (DEPs), primarily concentrated in the GO categories of the biological process (biological regulation, response to stimulus, etc.) and enriched in the KEGG pathways (PI3K-Akt signaling pathway, etc.). Among them, XDH was central to the regulatory network. Furthermore, Western blotting revealed higher expression of XDH in the ovaries of pre-broody geese than those of laying geese. Pearson correlation analysis indicated a significant correlation between XDH expression and oxidative stress markers in the ovaries of geese (r > 0.75). Overall, these results demonstrated that geese experience ovarian atrophy and remarkably increased oxidative stress during the broody period, suggesting that XDH may be a key driver of broodiness in geese.

Download full-text PDF

Source
http://dx.doi.org/10.3390/ani15020182DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759152PMC

Publication Analysis

Top Keywords

oxidative stress
16
broody period
12
geese
10
ovarian oxidative
8
broodiness geese
8
levels ovarian
8
period geese
8
pre-broody geese
8
laying geese
8
ovarian
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!