Climate change and human disturbance are critical factors affecting the habitat distribution of wild animals, with implications for management strategies such as protecting migration corridors, habitat restoration, and species conservation. In the Hupingshan National Nature Reserve (NNR), Reeve's muntjac () is a key prey species for the South China tiger (), which is extinct in the wild and targeted for reintroduction by the Chinese government. Thus, understanding the habitat distribution and abundance of Reeve's muntjac is essential to ensure the survival and sustainability of reintroduced tiger populations. Despite significant conservation efforts, the impacts of climate change and human disturbance on Reeve's muntjac habitat distribution in Hupingshan NNR remain unclear, though these factors could necessitate adaptive tiger management strategies due to shifts in prey abundance. In this study, we employed an optimized MaxEnt model to assess current habitat distribution and identify key environmental variables influencing the habitat distribution of Reeve's muntjac. Assuming non-climatic environmental factors will remain constant over the next century, we projected future habitat distribution under two shared socioeconomic pathways (SSP126 and SSP585) for the mid-century (2050s) and the late-century (2090s). Comparative analyses of current and projected habitat areas revealed potential impacts of climate change on this species. MaxEnt outputs classified habitat suitability into high, medium, and low levels. Results showed that climatic and human disturbance factors contributed 35.2% and 49.4% to habitat suitability, respectively. Under the SSP126 scenario, habitats with decreased suitability covered 0 km in the 2050s, expanding slightly to 4.2 km in the 2090s, while those with increased suitability spanned 491.1 km (2050s) and 463.2 km (2090s). Under the SSP585 scenario, habitats with decreased suitability covered 10.2 km in the 2050s and 431.8 km in the 2090s. Habitats with increased suitability were comparatively smaller under SSP585, covering 162.0 km (2050s) and 1.1 km (2090s). These findings suggest that while mid-century climate projections (SSP126 and SSP585) may support Reeve's muntjac's survival, habitat loss is projected by 2090s (SSP126). Thus, future climate change may lead to decreased habitat suitability and increased fragmentation, raising extinction risks for Reeves's muntjac. Mitigating these effects could involve establishing migration corridors, minimizing human disturbances, and potentially supplementing prey populations with captive-bred prey. Such measures are essential to support the South China tiger reintroduction plan and help ensure that prey availability remains sufficient for sustaining reintroduced tiger populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ani15020160 | DOI Listing |
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758617 | PMC |
Sci Rep
January 2025
Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.
View Article and Find Full Text PDFGenomics
January 2025
Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China. Electronic address:
Siganus guttatus and Siganus oramin are two major species that are naturally distributed along the Eastern Pacific coast and possess considerable ecological and economic value. Here, we present the construction and comparative analysis of the chromosome-level genomes of these two Siganus species. Employing a hybrid assembly strategy, we partitioned and independently assembled the PacBio, Illumina and Hi-C reads of S.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Science, Sun Yat-sen University, Zhuhai 519080, China. Electronic address:
The polychlorinated aromatic antimicrobial agent triclosan (TCS) is widely used to indiscriminately and rapidly kill microorganisms. The global use of TCS has led to widespread environmental contamination, posing significant threats to ecosystem and human health. Here we reported a newly isolated Pseudomonas sp.
View Article and Find Full Text PDFSci Total Environ
January 2025
Laoshan Laboratory, Qingdao 266237, China. Electronic address:
Seagrasses represent a significant class of marine foundation species, yet the distribution of seagrasses in the Yellow Sea and Bohai Sea remains uncertain, thereby impeding the efficacy of conservation and restoration practices. In this study, the spatial and temporal distribution pattern of seagrasses was simulated by the MaxEnt model based on the construction of marine environment and human activity datasets. The main controlling factors affecting seagrass potential distribution were analyzed, and the response of seagrass distribution to global change was clarified.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Key Laboratory of Marine Ranching, Ministry of Agriculture and Rural Affairs, China, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
The construction of artificial reefs (ARs) is an effective way to restore habitats and increase and breed fishery resources in marine ranches. However, studies on the impacts of ARs on the structure, function, and assembly patterns of the bacterial community (BC), which is important in biogeochemical cycles, are lacking. The compositions, diversities, assembly patterns, predicted functions, and key environmental factors of the attached and free-living microbial communities in five-year ARs (O-ARs) and one-year ARs (N-ARs) in Fangchenggang, China, were analyzed via 16S rRNA gene sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!