The epidermal growth factor receptor (EGFR) regulates gene expression through two primary mechanisms: as a growth factor in the nucleus, where it translocates upon binding its ligand, or via its intrinsic tyrosine kinase activity in the cytosol, where it modulates key signaling pathways such as RAS/MYC, PI3K, PLCγ, and STAT3. During tumorigenesis, these pathways become deregulated, leading to uncontrolled proliferation, enhanced migratory and metastatic capabilities, evasion of programmed cell death, and resistance to chemotherapy or radiotherapy. The and oncogenes are pivotal in tumorigenesis, driving processes such as resistance to apoptosis, replicative immortality, cellular invasion and metastasis, and metabolic reprogramming. These oncogenes are subject to regulation by a range of epigenetic and post-transcriptional modifications. This review focuses on the deregulation of EGFR, RAS, and MYC expression caused by (epi)genetic alterations and post-translational modifications. It also explores the therapeutic potential of targeting these regulatory proteins, emphasizing the importance of phenotyping neoplastic tissues to inform the treatment of cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers17020248DOI Listing

Publication Analysis

Top Keywords

growth factor
8
dynamic multilevel
4
multilevel regulation
4
regulation egfr
4
egfr kras
4
kras myc
4
myc oncogenes
4
oncogenes driving
4
driving cancer
4
cancer cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!