Background: Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that utilize the ubiquitin-proteasome system to selectively degrade target proteins. This innovative technology has shown remarkable efficacy and specificity in degrading oncogenic proteins and has progressed through various stages of preclinical and clinical development for hematologic malignancies, including adult acute myeloid leukemia (AML). However, the application of PROTACs in pediatric AML remains largely unexplored.

Methods: In this study, we show the potent effect of GSPT1 degradation against AML cells induced by either a GSPT1-selective cereblon modulator CC-90009 or by an off-target effect caused by a CDK6-PROTAC named GU3341.

Results: Both in vitro and ex vivo experiments revealed that GSPT1 degradation significantly inhibited tumor growth, induced cell cycle arrest, and triggered apoptosis in two pediatric AML subtypes characterized by RUNX1::RUNX1T1 and FUS::ERG fusion genes. Furthermore, the degradation of GSPT1 impaired the expression of RUNX1::RUNX1T1 and its cooperating transcription factors RUNX1 and ERG. Similarly, GSPT1 degradation also reduced FUS::ERG fusion transcript levels in AML cells harboring the translocation t(16;24)(p11:q22).

Conclusions: These findings suggest a new role of GSPT1 in regulating leukemic transcriptional networks and open a new therapeutic strategy to target leukemic fusion genes in pediatric AML patients.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers17020211DOI Listing

Publication Analysis

Top Keywords

gspt1 degradation
16
fusion genes
12
pediatric aml
12
acute myeloid
8
myeloid leukemia
8
aml cells
8
fuserg fusion
8
aml
6
degradation
5
gspt1
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!