: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial-mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy. : We assessed the combination of chemotherapy (gemcitabine/nab-paclitaxel) and dual blockade of LIF and PD-L1 on tumor growth and survival in orthotopic and spontaneous PDAC models. Flow cytometry and scRNA-seq were utilized to monitor the antitumor immune response. The role of key immune cells was further confirmed by depleting these immune cells, including CD4, CD8, or inflammatory monocytes. : Sequential treatment with chemotherapy (gemcitabine/nab-paclitaxel) and dual blockade of LIF and PD-L1 significantly improved antitumor efficacy compared to monotherapy or dual combinations of these therapies. This chemo/anti-LIF/anti-PD-L1 approach reduced EMT in tumor cells and enhanced the antitumor immune response, primarily through CD8 T cells, as depleting CD8 cells largely abrogated the effect of treatment. This combination therapy also shifted macrophages and dendritic cells towards an antitumor phenotype. : The combination of chemotherapy, anti-LIF, and anti-PD-L1 not only targeted tumor cells but also augmented the anti-tumor immune response. These findings strongly support advancing chemo/anti-LIF/anti-PD-L1 combination therapy to clinical trials in PDAC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/cancers17020204 | DOI Listing |
Cancers (Basel)
January 2025
Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA.
: Pancreatic ductal adenocarcinoma (PDAC), expecting to be the second leading cause of cancer deaths by 2030, resists immune checkpoint therapies due to its immunosuppressive tumor microenvironment (TME). Leukemia inhibitory factor (LIF) is a key target in PDAC, promoting stemness, epithelial-mesenchymal transition (EMT), and therapy resistance. Phase 1 clinical trials showed anti-LIF therapy is safe but with limited efficacy, suggesting better outcomes when combined with chemotherapy, radiotherapy, or immunotherapy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Medicine, Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA 02115.
iScience
September 2024
Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
Interactions between cells in the tumor microenvironment (TME) shape cancer progression and patient prognosis. To gain insights into how the TME influences cancer outcomes, we derive gene expression signatures indicative of signaling between stromal fibroblasts and cancer cells, and demonstrate their prognostic significance in multiple and independent squamous cell carcinoma cohorts. By leveraging information within the signatures, we discover that the HB-EGF/EGFR/MAPK axis represents a hub of tumor-stroma crosstalk, promoting the expression of CSF2 and LIF and favoring the recruitment of macrophages.
View Article and Find Full Text PDFClin Cancer Res
October 2024
Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain.
Purpose: Cervical cancer is a viral-associated tumor caused by the infection with the human papilloma virus. Cervical cancer is an immunogenic cancer that expresses viral antigens. Despite being immunogenic, cervical cancer does not fully respond to immune checkpoint inhibitors (ICI).
View Article and Find Full Text PDFNat Commun
April 2024
Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.
Pancreatic ductal adenocarcinoma (PDAC) is a highly metastatic disease for which better therapies are urgently needed. Fibroblasts and macrophages are heterogeneous cell populations able to enhance metastasis, but the role of a macrophage-fibroblast crosstalk in regulating their pro-metastatic functions remains poorly understood. Here we deconvolve how macrophages regulate metastasis-associated fibroblast (MAF) heterogeneity in the liver.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!