Background/objectives: S100A4, a small calcium-binding protein, promotes metastasis in a variety of human malignancies, but little is known about its involvement in ovarian clear cell carcinoma (OCCC). Herein, we characterized the functional role of S100A4 in this tumor type.

Methods: We analyzed immunohistochemical sections from 120 OCCC patients. OCCC cell lines in which S100A4 was knocked out (KO) or overexpressed were also used to study the protein's effects.

Results: Stable overexpression of S100A4 decreased the proliferation of OCCC cell lines (concomitant with more cells in G1 and fewer in the G2/M phase of the cell cycle). S100A4 overexpression also reduced susceptibility to cisplatin-induced apoptosis (probably due to an increased BCL2: BAX ratio), accelerated epithelial-mesenchymal transition (EMT)-related cell mobility, and enhanced cancer stem cell (CSC) properties (including increases in both spheroid formation and in the aldehyde dehydrogenase 1 (ALDH1) population). In contrast, S100A4 KO generally induced the opposite phenotypes, although it did not affect migration capability. In clinical OCCC samples, high S100A4 expression was associated with a low frequency of cleaved poly-(ADP-ribose) polymerase 1-positive apoptotic cells, a reduced proliferative rate, and expression of high ALDH1 and vimentin levels. In addition, a high S100A4 score was a significant (but not independent) prognostic factor in OCCC.

Conclusions: Our findings suggest that S100A4 may be an unfavorable prognostic factor in OCCC, as it accelerates tumor progression and promotes chemoresistance through the modulation of proliferation, susceptibility to apoptosis, and EMT/CSC properties.

Download full-text PDF

Source
http://dx.doi.org/10.3390/cancers17020184DOI Listing

Publication Analysis

Top Keywords

s100a4
10
ovarian clear
8
clear cell
8
cell carcinoma
8
tumor progression
8
occc cell
8
cell lines
8
high s100a4
8
prognostic factor
8
cell
7

Similar Publications

Background/objectives: S100A4, a small calcium-binding protein, promotes metastasis in a variety of human malignancies, but little is known about its involvement in ovarian clear cell carcinoma (OCCC). Herein, we characterized the functional role of S100A4 in this tumor type.

Methods: We analyzed immunohistochemical sections from 120 OCCC patients.

View Article and Find Full Text PDF

Gastric cancer remains a malignancy with high incidence, mortality rates, and poor prognosis globally. Osteoclastogenesis-associated transmembrane protein 1 (OSTM1), a transmembrane protein overexpressed in various tumors, has unclear functions in gastric-cancer progression. This study explores OSTM1's role in gastric-cancer proliferation and metastasis.

View Article and Find Full Text PDF

Background And Objectives: Structural and functional changes in the intramyocardial microcirculation increase the risk of myocardial infarction (MI). This study investigated intramyocardial perivascular fibrosis and pro-fibrotic cellular transitions in deceased acute and subacute MI patients to explore their involvement in the pathogenesis of MI.

Methods: Left ventricular tissue (LV) was obtained from the infarction area of autopsied patients with acute-phase MI (3-6 h;  = 24), subacute-phase MI (5-14 days;  = 12), and noninfarcted controls ( = 14).

View Article and Find Full Text PDF

Exploring Liraglutide's mechanism in reducing renal fibrosis: the Fsp1-CoQ10-NAD(P)H pathway.

Sci Rep

January 2025

Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, NO.3, Luqian Xingyuan Road, Shijiazhuang, 050200, Hebei Province, China.

Studies have confirmed that elevated glucose levels could lead to renal fibrosis through the process of ferroptosis. Liraglutide, a human glucagon-like peptide-1 (GLP-1) analogue, is a potential treatment option for diabetes. This study aimed to examine the potential of liraglutide (LIRA) in inhibiting ferroptosis and reducing high glucose-induced renal fibrotic injury in mice, and whether the Fsp1-CoQ10-NAD(P)H signal pathway is a mechanism for this effect.

View Article and Find Full Text PDF

Prostate fibrosis contributes to lower urinary tract dysfunction (LUTD). To develop targeted treatments for prostate fibrosis, it is necessary to identify the cell types and molecular pathways required for collagen production. We used a genetic approach to label and track potential collagen-producing cell lineages in mouse prostate through a round of Escherichia coli UTI89-mediated prostate inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!