Artificial Intelligence in Pediatric Electrocardiography: A Comprehensive Review.

Children (Basel)

Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL 32224, USA.

Published: December 2024

Artificial intelligence (AI) is revolutionizing healthcare by offering innovative solutions for diagnosis, treatment, and patient management. Only recently has the field of pediatric cardiology begun to explore the use of deep learning methods to analyze electrocardiogram (ECG) data, aiming to enhance diagnostic accuracy, expedite workflows, and improve patient outcomes. This review examines the current state of AI-enhanced ECG interpretation in pediatric cardiology applications, drawing insights from adult AI-ECG research given the progress in this field. It describes a broad range of AI methodologies, investigates the unique challenges inherent in pediatric ECG analysis, reviews the current state of the literature in pediatric AI-ECG, and discusses potential future directions for research and clinical practice. While AI-ECG applications have demonstrated considerable promise, widespread clinical adoption necessitates further research, rigorous validation, and careful consideration of equity, ethical, legal, and practical challenges.

Download full-text PDF

Source
http://dx.doi.org/10.3390/children12010025DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
pediatric cardiology
8
current state
8
pediatric
5
intelligence pediatric
4
pediatric electrocardiography
4
electrocardiography comprehensive
4
comprehensive review
4
review artificial
4
intelligence revolutionizing
4

Similar Publications

Purpose: To develop an artificial intelligence (AI) algorithm for automated measurements of spinopelvic parameters on lateral radiographs and compare its performance to multiple experienced radiologists and surgeons.

Methods: On lateral full-spine radiographs of 295 consecutive patients, a two-staged region-based convolutional neural network (R-CNN) was trained to detect anatomical landmarks and calculate thoracic kyphosis (TK), lumbar lordosis (LL), sacral slope (SS), and sagittal vertical axis (SVA). Performance was evaluated on 65 radiographs not used for training, which were measured independently by 6 readers (3 radiologists, 3 surgeons), and the median per measurement was set as the reference standard.

View Article and Find Full Text PDF

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Background: Artificial Intelligence (AI) is increasingly applied in healthcare to boost productivity, reduce administrative workloads, and improve patient outcomes. In nursing, AI offers both opportunities and challenges. This study explores nurses' perspectives on implementing AI in nursing practice within the context of Jordan, focusing on the perceived benefits and concerns related to its integration.

View Article and Find Full Text PDF

Background: Bullying, encompassing physical, psychological, social, or educational harm, affects approximately 1 in 20 United States teens aged 12-18. The prevalence and impact of bullying, including online bullying, necessitate a deeper understanding of risk and protective factors to enhance prevention efforts. This study investigated the key risk and protective factors most highly associated with adolescent bullying victimization.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!