Reprogramming energy metabolism is pivotal to tumor development. Ketone bodies (KBs), which are generated during lipid metabolism, are fundamental bioactive molecules that can be modulated to satisfy the escalating metabolic needs of cancer cells. At present, a burgeoning body of research is concentrating on the metabolism of KBs within tumors, investigating their roles as signaling mediators, drivers of post-translational modifications, and regulators of inflammation and oxidative stress. The ketogenic diet (KD) may enhance the sensitivity of various cancers to standard therapies, such as chemotherapy and radiotherapy, by exploiting the reprogrammed metabolism of cancer cells and shifting the metabolic state from glucose reliance to KB utilization, rendering it a promising candidate for adjunct cancer therapy. Nonetheless, numerous questions remain regarding the expression of key metabolic genes across different tumors, the regulation of their activities, and the impact of individual KBs on various tumor types. Further investigation is imperative to resolve the conflicting data concerning KB synthesis and functionality within tumors. This review aims to encapsulate the intricate roles of KBs in cancer metabolism, elucidating a comprehensive grasp of their mechanisms and highlighting emerging clinical applications, thereby setting the stage for future investigations into their therapeutic potential.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biomedicines13010210DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760447PMC

Publication Analysis

Top Keywords

ketone bodies
8
cancer metabolism
8
cancer cells
8
metabolism
6
cancer
5
comprehensive overview
4
overview ketone
4
bodies cancer
4
metabolism mechanisms
4
mechanisms application
4

Similar Publications

OXCT1 succinylation and activation by SUCLA2 promotes ketolysis and liver tumor growth.

Mol Cell

January 2025

Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310029, China. Electronic address:

Ketone bodies generated in hepatocytes in the adult liver are used for nonhepatic tissues as an energy source. However, ketolysis is reactivated in hepatocellular carcinoma (HCC) cells with largely unelucidated mechanisms. Here, we demonstrate that 3-oxoacid CoA-transferase 1 (OXCT1), a rate-limiting enzyme in ketolysis, interacts with SUCLA2 upon IGF1 stimulation in HCC cells.

View Article and Find Full Text PDF

Impact of the Ketogenic Diet on Neurological Diseases: A Review.

Life (Basel)

January 2025

Neurochemistry Department, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Mexico City 14269, Mexico.

Background: The ketogenic diet (KD), high in fat and low in carbohydrates, was introduced in the 1920s as a non-pharmacological treatment for refractory epilepsy. Although its mechanism of action is not fully understood, beneficial effects have been observed in neurological diseases such as epilepsy, Alzheimer's disease, and Parkinson's disease.

Objective: This review examines the impact of the ketogenic diet and its molecular and neuroglial effects as a complementary therapy for neurological diseases.

View Article and Find Full Text PDF

Reprogramming energy metabolism is pivotal to tumor development. Ketone bodies (KBs), which are generated during lipid metabolism, are fundamental bioactive molecules that can be modulated to satisfy the escalating metabolic needs of cancer cells. At present, a burgeoning body of research is concentrating on the metabolism of KBs within tumors, investigating their roles as signaling mediators, drivers of post-translational modifications, and regulators of inflammation and oxidative stress.

View Article and Find Full Text PDF

Background: The 3-hydroxybutyrate dehydrogenase 1 (BDH1) mainly participates in the regulation of milk fat synthesis and ketone body synthesis in mammary epithelial cells. In our previous study, BDH1 was identified as a key candidate gene regulating lipid metabolism in mammary glands of dairy goats by RNA-seq. This study aimed to investigate the effect of BDH1 on lipid metabolism in mammary epithelial cells of dairy goats (GMECs).

View Article and Find Full Text PDF

Transcriptomics reveals the regulatory mechanisms of circRNA in the muscle tissue of cows with ketosis postpartum.

Genomics

January 2025

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan 611130, China. Electronic address:

The transition period from late pregnancy to early lactation in dairy cows involves significant metabolic changes to cope with the challenges related to energy metabolism. Muscle tissue, as the largest energy-metabolizing tissue in dairy cows, plays a crucial role in energy metabolism. Furthermore, circular RNAs (circRNAs) have been shown to play key roles in various biological events.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!