: Cold atmospheric plasma (CAP) has been demonstrated as an adjustable device to generate various combinations of short-lived reactive oxygen and nitrogen species (RONS) and as a promising appliance for cancer therapy. This study investigated the effects of direct and indirect treatments of Argon-based CAP to cancer cells (A2058, A549, U2OS and BCC) and fibroblasts (NIH3T3 and L929) on cell viability. We also aimed to understand whether plasma-generated RONS were involved in this process using genetic evidence. : The intensity of reactive species in the plasma gas and the concentrations of RONS in phosphate-buffered saline (PBS) and cell culture medium were measured. A viability assay was performed after the cells were treated by plasma in PBS and medium with various volumes to realize the lethal effects of plasma under different conditions. Diverse cells were treated in the same solution to compare the sensitivities of different cells to plasma treatments. The gene expression profiles of A2058 cells after the direct and indirect treatments were analyzed by next generation gene sequencing. Accordingly, we discovered the advantages of sequential treatments on cancer therapy. : The cumulative concentration of hydroxyterephthalic acid (HTA) revealed that the pre-existing OH radical (•OH) in PBS increased with the treatment durations. However, there was no significant increase in the concentration of HTA in culture medium. HTA was detected in the treatment interface of PBS but not medium, showing the penetration of •OH through PBS. The concentrations of HO and NO increased with the treatment durations, but that of NO was low. The direct treatments caused stronger lethal effects on cancer cells under certain conditions. The fibroblasts showed higher tolerance to plasma treatments. From gene expression analysis, the initial observations showed that both treatments influenced transcription-related pathways and exhibited shared or unique cellular stress responses. The pre-treatments, especially of direct exposure, revealed better cancer inhibition. : The anti-cancer efficiency of plasma could be enhanced by pre-treatments and by adjusting the liquid interfaces to avoid the rapid consumption of short-lived RONS in the medium. To achieve better therapeutic effects and selectivity, more evidence is necessary to find optional plasma treatments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/biomedicines13010184 | DOI Listing |
Cytotherapy
January 2025
Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. Electronic address:
Background/aims: Human mesenchymal stromal cells (hMSC) are multipotent adult cells commonly used in regenerative medicine as advanced therapy medicinal products. The expansion of these cells in xeno-free supplements is highly encouraged by regulatory agencies due to safety concerns. However, the number of supplements with robust performance and consistency for hMSC expansion are limited.
View Article and Find Full Text PDFCytotherapy
January 2025
Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Ontario, Canada; Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Medicine, Division of Hematology, University of Toronto, Toronto, Ontario, Canada. Electronic address:
The December 2024 US Food and Drug Administration (FDA) approval of Mesoblast's Ryoncil (remestemcel-L-rknd)-allogeneic bone marrow mesenchymal stromal cell (MSC(M)) therapy-in pediatric acute steroid-refractory graft-versus-host-disease finally ended a long-lasting drought on approved MSC clinical products in the United States. While other jurisdictions-including Europe, Japan, India, and South Korea-have marketed autologous or allogeneic MSC products, the United States has lagged in its approval. The sponsor's significant efforts and investments, working closely with the FDA addressing concerns regarding clinical efficacy and consistent MSC potency through an iterative process that spanned several years, was rewarded with this landmark approval.
View Article and Find Full Text PDFMol Ther
January 2025
Brown Center for Immunotherapy. Indiana University School of Medicine. 975 W. Walnut St., IB554A, Indianapolis, IN 46202. Electronic address:
Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:
Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:
Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!