The Effects of Synthetic Polymers on the Release Patterns of Bupivacaine Hydrochloride from Sodium Hyaluronate Hydrogels.

Biomedicines

Department of Physical Chemistry and Biophysics, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211A, 55-556 Wrocław, Poland.

Published: December 2024

Background: Using hydrogels for the controlled release of drugs is beneficial for patients, who then receive the proper dose of the medicinal substance. In addition, the formulation can provide more consistent drug absorption while reducing the frequency of dosing.

Objectives: The aim of this investigation is to propose a novel HA (sodium hyaluronate)-based hydrogel for intra-articular injection doped with synthetic polymers and incorporated with bupivacaine hydrochloride (Bu) as a local anesthetic. The other aim of this study is to reveal the effects of the formulation's ingredients on its viscosity and the relationship between the hydrogel's viscosity and drug release.

Methods: First, HA-based hydrogels doped with synthetic polymers and incorporated with Bu were prepared. A study of the hydrogels' viscosities was performed using a rotational viscometer. Release tests were carried out by employing a paddle-over-disk apparatus following the USP/Ph.Eur guidelines. The drug concentrations in the acceptor fluid were analyzed spectrophotometrically.

Results: It was found that the viscosity of the hydrogels doped with synthetic polymers was higher than the viscosity of the hydrogels made with only HA. The viscosity of the hydrogels doped with AX (ammonium acryloyldimethyltaurate/VP copolymer) was the highest, measuring 6750 ± 160 cP and 12623 ± 379 cP with and without Bu, respectively. The results of the kinetic experiment indicate that the Higuchi and Korsmeyer-Peppas models best described the drug release. Bu was released the most slowly from the formulation doped with AX. The release rate constants obtained from the Higuchi and Korsmeyer-Peppas models were k = 4.4 ± 0.2 mg × min and k = 3.4 ± 0.2 × 10 min, respectively. The half-release time, calculated using the Higuchi model, was the longest for the formulation doped with AX, at 199.5 ± 17.6 min.

Conclusions: This indicates that the incorporation of AX into the hydrogel may prolong the drug dissolution. The hydrogel doped with AX was the optimal formulation for the controlled release of Bu.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biomedicines13010039DOI Listing

Publication Analysis

Top Keywords

synthetic polymers
16
doped synthetic
12
hydrogels doped
12
viscosity hydrogels
12
bupivacaine hydrochloride
8
controlled release
8
polymers incorporated
8
higuchi korsmeyer-peppas
8
korsmeyer-peppas models
8
formulation doped
8

Similar Publications

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

Engineering conductive covalent-organic frameworks enable highly sensitive and anti-interference molecularly imprinted electrochemical biosensor.

Biosens Bioelectron

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Covalent organic frameworks (COFs) have drawn great interest in electrochemical sensing. However, most are integrated as enrichment units or reaction carriers and are co-modified with metal nanomaterials. Few studies use the single pristine COFs as an electrochemical signal amplifier.

View Article and Find Full Text PDF

Collagen, a major component of the extracellular matrix, is crucial for the structural integrity of the Caenorhabditis elegans cuticle. While several proteins involved in collagen biosynthesis have been identified, the complete regulatory network remains unclear. This study investigates the role of CALU-1, an ER-resident calcium-binding protein, in cuticle collagen formation and maintenance.

View Article and Find Full Text PDF

Targeted Polymer-Peptide Conjugates for E-Selectin Blockade in Renal Injury.

Pharmaceutics

January 2025

Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

Background/objectives: Leukocytes play a significant role in both acute kidney injury (AKI) and chronic kidney disease (CKD), contributing to pathogenesis and tissue damage. The process of leukocyte infiltration into the inflamed tissues is mediated by the interactions between the leukocytes and cell adhesion molecules (CAMs, i.e.

View Article and Find Full Text PDF

Synthesis of P(AM/AA/SSS/DMAAC-16) and Studying Its Performance as a Fracturing Thickener in Oilfields.

Polymers (Basel)

January 2025

Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.

In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!