Hemorrhagic shock is a type of hypovolemic shock and a significant cause of trauma-related death worldwide. The innate immune system has been implicated as a key mediator in developing severe complications after shock. Inflammation from the innate immune system begins at the time of initial insult; however, its activation is exaggerated, resulting in early and late-stage complications. Hypoxia and hypoperfusion lead to the release of molecules that act as danger signals known as damage-associated molecular patterns (DAMPs). DAMPs continue to circulate after shock, resulting in excess inflammation and tissue damage. We recently discovered that cold-inducible RNA-binding protein released into the extracellular space acts as a DAMP. During hemorrhagic shock, hypoperfusion leads to cell necrosis and the release of CIRP into circulation, triggering both systemic inflammation and local tissue damage. In this review, we discuss extracellular cold-inducible RNA-binding protein (eCIRP)'s role in sterile inflammation, as well as its various mechanisms of action. We also share our more newly developed anti-eCIRP agents with the eventual goal of producing drug therapies to mitigate organ damage, reduce mortality, and improve patient outcomes related to hemorrhagic shock. Finally, we suggest that future preclinical studies are required to develop the listed therapeutics for hemorrhagic shock and related conditions. In addition, we emphasize on the challenges to the translational phase and caution that the therapy should allow the immune system to continue to function well against secondary infections during hospitalization.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biomedicines13010012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759867PMC

Publication Analysis

Top Keywords

hemorrhagic shock
20
cold-inducible rna-binding
12
rna-binding protein
12
immune system
12
extracellular cold-inducible
8
shock
8
therapeutics hemorrhagic
8
innate immune
8
tissue damage
8
hemorrhagic
5

Similar Publications

Dengue fever, caused by the dengue virus (DENV), poses a significant global health challenge, particularly in tropical and subtropical regions. Recent increases in indigenous DENV cases in Europe are concerning, reflecting rising incidence linked to climate change and the spread of mosquitoes. These vectors thrive under environmental conditions like temperature and humidity, which are increasingly influenced by climate change.

View Article and Find Full Text PDF

Rupture of the thyrocervical trunk aneurysm into the thoracic cavity does not occur very often. It is an urgent condition due to hemorrhagic shock by massive hemothorax with potentially fatal consequences. Pregnancy and puerperium are additional risk factors for a rupture of the thyrocervical trunk aneurysm in patients with neurofibromatosis and aneurysms.

View Article and Find Full Text PDF

Hemorrhagic shock is a type of hypovolemic shock and a significant cause of trauma-related death worldwide. The innate immune system has been implicated as a key mediator in developing severe complications after shock. Inflammation from the innate immune system begins at the time of initial insult; however, its activation is exaggerated, resulting in early and late-stage complications.

View Article and Find Full Text PDF

Purpose: Resuscitative endovascular balloon occlusion of the aorta (REBOA) is beneficial for uncontrollable torso bleeding; however, prolonged REBOA causes ischemia-reperfusion injury. The purpose of this study is to examine the hypothesis that continuous renal replacement therapy (CRRT) with a cytokine-adsorbing hemofilter would improve mortality due to hemorrhagic shock with REBOA-reperfusion injury by controlling metabolic acidosis, hyperkalemia, and hypercytokinemia.

Methods: Hemorrhagic shock with 40% blood loss was induced by phlebotomy in eight female swine.

View Article and Find Full Text PDF

Introduction: Trauma and hemorrhagic shock (T/HS) are associated with multiple organ injury. Antithrombin (AT) has anti-inflammatory and organ protective activity through its interaction with endothelial heparan sulfate containing a 3-O-sulfate modification. Our objective was to examine the effects of T/HS on 3-O-sulfated (3-OS) heparan sulfate expression and determine whether AT-heparan sulfate interactions are necessary for its anti-inflammatory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!