Coronary obstruction following plaque rupture is a critical pathophysiological change in the progression of stable angina (SAP) to acute coronary syndrome (ACS). The accumulation of platelets and various inflammatory cells on apoptotic endothelial cells is a key factor in arterial obstruction after plaque rupture. Through single-cell sequencing analysis (scRNA-seq) of plaques from SAP and ACS patients, we identified significant changes in the annexin V and P-selectin glycoprotein ligand 1 pathways. Staphylococcal superantigen-like 5 (SSL5) is an optimal antagonist P-selectin glycoprotein ligand 1 (PSGL1), while annexin V (AnxA5) can precisely detect dead cells in vivo. We constructed the SSL5-AnxA5 fusion protein and observed its role in preventing the interaction between apoptotic endothelial cells, platelets, and inflammatory cells. The scRNA-seq data were extracted from the Gene Expression Omnibus (GEO) database. Single-cell transcriptome analysis results and cell-cell communication were analyzed to identify the ACS and SAP cell clusters and elucidate the intercellular communication differences. Then, we constructed and verified a fusion protein comprising SSL5 and AnxA5 domains via polymerase chain reaction (PCR) and Western blot. The binding capacity of the fusion protein to P-selectin and apoptotic cells was evaluated by flow cytometry and AnxA5-FITC apoptosis detection kit, respectively. Furthermore, co-incubation and immunofluorescence allowed us to describe the mediation effect of it between inflammatory cells and endothelial cells or activated platelets. Our analysis of the scRNA-seq data showed that (PSGL1 gene) and had higher information flowing in ACS compared to SAP. The signaling pathway network demonstrated a higher number of interactions in ACS, while the signaling pathway network revealed stronger signaling from macrophages toward monocytes in ACS compared to SAP. Competition binding experiments with P-selectin showed that SSL5-AnxA5 induced a decrease in the affinity of PSGL1. SSL5-AnxA5 effectively inhibited the combination of endothelial cells with inflammatory cells and the interaction of activated platelets with inflammatory cells. Additionally, this fusion protein exhibited remarkable capability in binding to apoptotic cells. The bifunctional protein SSL5-AnxA5 exhibits promising potential as a protective agent against local inflammation in arterial tissues, making it an excellent candidate for PSGL1-related therapeutic interventions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/biomedicines13010008 | DOI Listing |
Mol Ther
January 2025
Brown Center for Immunotherapy. Indiana University School of Medicine. 975 W. Walnut St., IB554A, Indianapolis, IN 46202. Electronic address:
Chimeric Antigen Receptor (CAR) T cell therapy has revolutionized cancer treatment and is now being explored for other diseases, such as autoimmune disorders. While the tumor microenvironment (TME) in cancer is often immunosuppressive, in autoimmune diseases, the environment is typically inflammatory. Both environments can negatively impact CAR T cell survival: the former through direct suppression, hypoxia, and nutrient deprivation, and the latter through chronic T cell receptor (TCR) engagement, risking exhaustion.
View Article and Find Full Text PDFBMC Neurol
January 2025
Department of Radiology, School of Medicine, College of Medicine and Health Sciences, Mizan-Tepi University, Mizan-Teferi, Ethiopia.
Background: Malaria is an infectious disease caused by Plasmodium parasites, transmitted to humans by infected female Anopheles mosquitoes. Five Plasmodium species infect humans: P. vivax, P.
View Article and Find Full Text PDFCell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFReprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!