Antimicrobial resistance (AMR) is a growing global health threat. This study investigated antibiotic resistance in isolates from municipal wastewater (86 isolates) and clinical urinary tract infection (UTI) cases (34 isolates) in a Grenadian community, using data from January 2022 to October 2023. Antibiogram data, assessed per WHO guidelines for Critically Important antimicrobials (CIA), showed the highest resistance levels in both clinical and wastewater samples for ampicillin, followed by amoxicillin/clavulanic acid and nalidixic acid, all classified as Critically Important. Similar resistance was observed for sulfamethoxazole-trimethoprim (highly important) in both groups, with nitrofurantoin showing resistance in the important category. According to the WHO AWaRe classification, ampicillin (ACCESS group) had the highest resistance, while nitrofurantoin had the lowest across all samples. The WATCH group antibiotics, cefuroxime and cefoxitin, showed comparable resistance levels, whereas aztreonam from the RESERVE group (tested only in wastewater) was 100% sensitive. Multiple Antibiotic Resistance (MAR) index analysis revealed that 7% of wastewater and 38.2% of clinical samples had MAR values over 0.2, indicating prior antibiotic exposure in clinical isolates. These parallel patterns in wastewater and clinical samples highlight wastewater monitoring as a valuable tool for AMR surveillance, supporting antibiotic stewardship through ongoing environmental and clinical assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3390/ijerph22010097 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!