Chronic kidney disease (CKD) and hypertension are interconnected, worsening each other. Recent studies have shown that the reduction of peroxiredoxin 5 (Prdx5) accelerates kidney fibrosis, a hallmark of CKD. This study aims to observe whether the deficiency of Prdx5 also contributes to the worsening of CKD-related hypertension. Angiotensin II (Ang II, 1000 ng/kg/day) was infused into Prdx5 wild-type (WT) and Prdx5 knock out (KO) mice (each group; n = 6). The blood pressure was higher in the Ang-II-infused Prdx5 KO mice than in the WT mice. Ang-II-induced ROS/RNS generation and fibrotic marker expressions were also higher in the Prdx5 KO mice. In particular, the expression of the sodium-chloride cotransporter (NCC), an ion transport protein important for sodium retention in the distal convoluted tubule, and the NCC's phosphorylation at Thr53 were increased in the kidney of Ang-II-infused Prdx5 KO. The activity of an WNK4-SPAK/OSR1, upstream activator of the NCC, was also increased. In 209/mDCT cells, the knockdown of Prdx5 (siPrdx5) increased the activity of Ang-II-mediated WNK4-SPAK/OSR1-NCC signaling and Ang-II-mediated ROS generation, whereas Prdx5 overexpression showed opposite results. In conclusion, Prdx5 negatively regulates the WNK4-SPAK/OSR1-NCC signaling axis, indicating its potential as a candidate for antihypertensive drug development through NCC regulation.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox14010100DOI Listing

Publication Analysis

Top Keywords

prdx5
10
sodium-chloride cotransporter
8
ang-ii-infused prdx5
8
prdx5 mice
8
wnk4-spak/osr1-ncc signaling
8
peroxiredoxin acts
4
acts negative
4
negative regulator
4
regulator sodium-chloride
4
cotransporter involved
4

Similar Publications

Chronic kidney disease (CKD) and hypertension are interconnected, worsening each other. Recent studies have shown that the reduction of peroxiredoxin 5 (Prdx5) accelerates kidney fibrosis, a hallmark of CKD. This study aims to observe whether the deficiency of Prdx5 also contributes to the worsening of CKD-related hypertension.

View Article and Find Full Text PDF

Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.

View Article and Find Full Text PDF

Background: Tubular injury triggered by hyperglycemia is an important pathological characteristic in diabetic nephropathy (DN). Accumulated advanced glycation end products and their precursor methylglyoxal (MGO), contribute to the development of DN. Carnosine has been shown to prevent the development of DN but the underlying mechanism still needs to be studied in depth.

View Article and Find Full Text PDF

We aim to explore variations of serum inflammation-related proteins in an acute compartment syndrome (ACS) rat model. We collected serum from 25 healthy Sprague-Dawley rats (control group, CG) and 50 rats with tibial fractures, including 25 rats with ACS (ACS group, AG), and 25 rats without ACS (fracture group, FG). Ten samples per group were randomly chosen for proximity extension assay analysis of 92 inflammation-related proteins, and all samples were verified by enzyme-linked immunosorbent assays.

View Article and Find Full Text PDF

Research Question: Male infertility accounts for almost half of all infertility cases worldwide, with idiopathic male infertility accounting for up to 30% of the cases. Sperm proteomics has revealed critical molecular pathway changes in men with infertility. However, the sperm mitochondrial proteome remains poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!