Diabetic retinopathy is characterized by hyperglycemic retinal pigment epithelial cells that secrete excessive pro-inflammatory cytokines and VEGF, leading to retinal damage and vision loss. Cobalt protoporphyrin (CoPP) is a compound that can reduce inflammatory responses by inducing high levels of HO-1. In the present study, the therapeutic effects of CoPP were examined in ARPE-19 cells under hyperglycemia. ARPE-19 cells were incubated in culture media containing either 5.5 mM (NG) or 25 mM (HG) glucose, with or without the addition of 0.1 µM CoPP. Protein expressions in samples were determined by either Western blotting or immunostaining. A Seahorse metabolic analyzer was used to assess the impact of CoPP treatment on mitochondrial respiration in ARPE-19 cells in NG or HG media. ARPE-19 cells cultured in NG media displayed different cell morphology than those cultured in HG media. CoPP treatment induced high HO-1 expressions and significantly enhanced the viability of ARPE-19 cells under hyperglycemia. Moreover, CoPP significantly downregulated expressions of inflammatory and apoptotic markers and significantly upregulated mitochondrial respiration in APRPE-19 cells under hyperglycemia. CoPP treatment significantly enhanced cell viability in ARPE-19 cells under hyperglycemia. The treatment also downregulated the expressions of pro-inflammatory and upregulated mitochondrial respiration in the hyperglycemic cells.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox14010092DOI Listing

Publication Analysis

Top Keywords

arpe-19 cells
24
mitochondrial respiration
16
cells hyperglycemia
16
copp treatment
12
cells
10
cobalt protoporphyrin
8
retinal pigment
8
pigment epithelial
8
epithelial cells
8
cultured media
8

Similar Publications

Diabetic retinopathy is characterized by hyperglycemic retinal pigment epithelial cells that secrete excessive pro-inflammatory cytokines and VEGF, leading to retinal damage and vision loss. Cobalt protoporphyrin (CoPP) is a compound that can reduce inflammatory responses by inducing high levels of HO-1. In the present study, the therapeutic effects of CoPP were examined in ARPE-19 cells under hyperglycemia.

View Article and Find Full Text PDF

Glucose-sensing ChREBP and MondoA are transcriptional factors involved in the lipogenic, inflammatory, and insulin signaling pathways implicated in metabolic disorders; however, limited ocular studies have been conducted on these proteins. We aimed to investigate the potential role of ChREBP in the pathogenesis of diabetic retinopathy (DR). We used diabetic human and mouse retinal cryosections analyzed by immunohistochemistry.

View Article and Find Full Text PDF

Astragaloside IV inhibits retinal pigment epithelial cell senescence and reduces IL-1β mRNA stability by targeting FTO-mediated mA methylation.

Phytomedicine

January 2025

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China. Electronic address:

Background: Resistance to senescence in retinal pigment epithelial (RPE) cells can delay the progression of age-related macular degeneration (AMD). However, the mechanisms underlying RPE cell senescence remain inadequately understood, and effective therapeutic strategies are lacking. While astragaloside IV (Ast) has demonstrated anti-aging properties, its specific effects on RPE cell senescence and potential mechanisms are not yet fully clarified.

View Article and Find Full Text PDF

Aim: To test the effect of autophagy on inflammatory damage resulting from oxidative stress in adult retinal pigment epithelial cell line (ARPE-19).

Methods: ARPE-19 cells were pretreated with 200 and 600 µmol/L hydrogen peroxide (HO) at various time intervals. The changes of cell morphology, cell viability, reactive oxygen species (ROS) level, autophagic activity, and the inflammatory cytokines (TNFα, IL-6, and TGFβ) were measured at baseline and after treatment with autophagy inducer rapamycin (Rapa) and suppressor wortmannin (Wort) or shATG5.

View Article and Find Full Text PDF

The current research discusses polymer conjugation, formulation development, and evaluation of sorafenib-loaded polymeric nanomicelles of conjugated soluplus (solu-tin) and polymeric mixed nanomicelles of conjugated soluplus (solu-tin) with conjugated poloxamer 188 (polo-tin) for site-specific posterior segment delivery to the retina in managing retinoblastoma. Firstly, the soluplus and poloxamer 188 were conjugated with biotin by Fischer esterification reaction and evaluated by FTIR and H NMR for confirmation of covalent bond formation involving the carboxyl group of biotin and hydroxyl group of polymers. Secondly, the sorafenib-loaded solu-tin nanomicelles and mixed nanomicelles of solu-tin with polo-tin were formulated by the thin film hydration method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!