AI Article Synopsis

Article Abstract

Our group has recently demonstrated that exercise intervention affects the release and function of bone marrow endothelial progenitor cell-derived extracellular vesicles (EVs) in transgenic hypertensive mice. Whether such an exercise regimen can impact circulating EVs (cEVs) remains unknown. In this study, we investigated the influence of exercise on cEV level and function. Transgenic hypertensive mice (Alb1-Ren) underwent 8-week treadmill exercise (10 m/min for 1 h, 5 days per week). Age- and sex-matched sedentary Alb1-Ren mice served as controls. cEVs were isolated from the blood of exercised and sedentary mice and are denoted as ET-cEV and nET-cEV, respectively. cEVs were labeled to determine their uptake efficiency and pathways. The functions of cEVs were assessed in an Angiotensin II (Ang II) plus hypoxia-injured cerebral microvascular endothelial cell (mBMEC) injury model. Cellular migration ability and oxidative stress were evaluated. We found that treadmill exercise stimulated cEV release, and ET-cEVs were more prone to be internalized by mBMECs. The ET-cEV internalization was mediated by macropinocytosis and endocytosis pathways. Functional studies showed that ET-cEVs can improve the compromised migration capability of mBMECs challenged by Ang II plus hypoxia. Additionally, ET-cEV treatment upregulated the expression of p-Akt/Akt in mBMECs. Compared to nET-cEVs, ET-cEVs significantly reduced ROS overproduction in Ang II plus hypoxia-injured mBMECs, associated with decreased Nox2 expression. All these findings suggest that exercise-intervened cEVs can protect cerebral microvascular endothelial cells against hypertensive and hypoxic injury.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox14010077DOI Listing

Publication Analysis

Top Keywords

cerebral microvascular
12
microvascular endothelial
12
extracellular vesicles
8
oxidative stress
8
endothelial cells
8
cells hypertensive
8
hypertensive hypoxic
8
transgenic hypertensive
8
hypertensive mice
8
treadmill exercise
8

Similar Publications

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

Postoperative neurocognitive dysfunction (PND) is a prevalent and debilitating complication in elderly surgical patients, characterized by persistent cognitive decline that negatively affects recovery and quality of life. As the aging population grows, the rising number of elderly surgical patients has made PND an urgent clinical challenge. Despite increasing research efforts, the pathophysiological mechanisms underlying PND remain inadequately characterized, underscoring the need for a more integrated framework to guide targeted interventions.

View Article and Find Full Text PDF

Our group has recently demonstrated that exercise intervention affects the release and function of bone marrow endothelial progenitor cell-derived extracellular vesicles (EVs) in transgenic hypertensive mice. Whether such an exercise regimen can impact circulating EVs (cEVs) remains unknown. In this study, we investigated the influence of exercise on cEV level and function.

View Article and Find Full Text PDF

Noise pollution is a known health risk factor and evidence for cardiovascular diseases associated with traffic noise is growing. At least 20% of the European Union's population lives in noise-polluted areas with exposure levels exceeding the recommended limits of the World Health Organization, which is considered unhealthy by the European Environment Agency. This results in the annual loss of 1.

View Article and Find Full Text PDF

TNFSF9 Silence Impedes Cerebral Ischemia-Reperfusion Injury via Modulating SLC3A2 Expression in Brain Microvascular Endothelial Cells.

J Mol Neurosci

January 2025

Department of Special Examination, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, No. 305 Tianmushan Road, Hangzhou City, 310013, Zhejiang, China.

Cerebral ischemia-reperfusion injury (CIRI), which stays unresolved in the clinic, occurs after recanalization of blood vessels serving brain tissues in acute ischemic stroke patients and can result in massive brain cell death, and cell ferroptosis contributes greatly to this process. Our research firstly found that TNFSF9 expression harbored diagnostic value on CIRI patients and intended to further investigate its regulatory mechanism in CIRI, which might facilitate its diagnostic and therapeutic application in the clinic. The level of TNSF9 mRNA was augmented in the plasma of CIR patients, and its silence impeded ferroptosis, apoptosis, and release of inflammatory mediators of BMECs with OGD/R treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!