Restoration of Sestrin 3 Expression Mitigates Cardiac Oxidative Damage in Ischemia-Reperfusion Injury Model.

Antioxidants (Basel)

Department of Medicinal & Life Science, College of Science and Convergence Technology, Hanyang University-ERICA, Ansan 15588, Republic of Korea.

Published: January 2025

Cardiac ischemia-reperfusion injury (IRI) occurs when blood flow is restored to the myocardium after a period of ischemia, leading to oxidative stress and subsequent myocardial cell damage, primarily due to the accumulation of reactive oxygen species (ROS). In our previous research, we identified that miR-25 is significantly overexpressed in pressure overload-induced heart failure, and its inhibition improves cardiac function by restoring the expression of SERCA2a, a key protein involved in calcium regulation. In this study, we aimed to investigate the role of miR-25 in the context of ischemia-reperfusion injury. We found that miR-25 was markedly upregulated under hypoxic conditions in both in vitro and in vivo models. Through in silico analysis, we identified Sestrin3 (SESN3), an antioxidant protein known for its protective effects against oxidative stress, as a novel target of miR-25. Based on these findings, we hypothesized that inhibiting miR-25 would restore Sestrin3 expression, thereby reducing ROS-induced myocardial cell damage and improving cardiac function. To test this hypothesis, we employed two model systems: a hypoxia/reoxygenation (H/R) stress model using H9c2 myoblasts and a surgically induced ischemia-reperfusion injury mouse model. Our results demonstrated that the use of miR-25 inhibitors significantly improved cardiac function and reduced myocardial damage in both models through the restoration of SESN3 expression. In conclusion, our findings suggest that targeting miR-25 may serve as a novel therapeutic modality to alleviate oxidative damage in the heart.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox14010061DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
16
cardiac function
12
oxidative damage
8
oxidative stress
8
myocardial cell
8
cell damage
8
mir-25
7
cardiac
5
damage
5
restoration sestrin
4

Similar Publications

Dihydromyricetin (Dih), a naturally occurring flavonoid, has been identified to exert a protective effect against ischemia/reperfusion injury. However, the detailed mechanisms remain unclear. Here we investigated the biological role of Dih in preventing hypoxia/reoxygenation (H/R) injury in cardiomyocytes.

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation.

Arch Biochem Biophys

January 2025

Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!