Diabetic foot ulcers represent a severe complication of diabetes, often resulting in amputation and high mortality rates. Currently, there are no treatments for diabetic foot ulcers other than antibiotics and dressings. In this study, we evaluated the wound-healing effects of an antidiabetic agent pinitol in lipopolysaccharide (LPS)-damaged human dermal fibroblasts (HDFs) and streptozotocin (STZ)-induced diabetic rat models with a foot wound. Our findings indicated that pinitol enhanced cell migration, proliferation, and wound healing by activating Nrf2, thereby mitigating oxidative stress and inflammatory responses at the wound site. Additionally, pinitol restored mitochondrial energy metabolism, decreased matrix metalloproteinase (MMP) activity, and increased collagen deposition. Furthermore, pinitol facilitated angiogenesis, contributing to improved wound healing. Taken together, these findings suggest that pinitol could be a promising therapeutic agent for the treatment of diabetic foot ulcers.

Download full-text PDF

Source
http://dx.doi.org/10.3390/antiox14010015DOI Listing

Publication Analysis

Top Keywords

diabetic foot
16
foot ulcers
16
wound healing
8
pinitol
6
diabetic
5
foot
5
pinitol improves
4
improves diabetic
4
ulcers
4
ulcers streptozotocin-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!