Autophagy is a vital cellular pathway in eukaryotic cells, including neurons, where it plays significant roles in neurodevelopment and maintenance. A crucial step in autophagy is the formation of the class III phosphatidylinositol 3-kinase complex 1 (PI3KC3-C1), which is essential for initiating autophagosome biogenesis. Beclin 1 is the key component of PI3KC3-C1, and its interactors have been reported to affect autophagy. The brain-enriched adaptor protein FE65 has been shown to interact with Alzheimer's disease amyloid precursor protein (APP) to alter the processing of APP. Additionally, FE65 has been implicated in various cellular pathways, including autophagy. We demonstrate here that FE65 positively regulates autophagy. FE65, through its C-terminus, has been shown to interact with Beclin 1. Notably, the overexpression of FE65 enhances Beclin 1-mediated autophagy, whereas this process is attenuated in FE65 knockout cells. Moreover, the stimulatory effect of FE65 on Beclin 1-mediated autophagy is diminished by an FE65 C-terminus deletion mutant that disrupts the FE65-Beclin 1 interaction. Lastly, we have found that the FE65-Beclin 1 interaction modulates the kinase activity of the PI3KC3-C1 complex. Together, we have identified FE65 as a novel Beclin 1 interactor, and this interaction potentiates autophagy.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology14010097DOI Listing

Publication Analysis

Top Keywords

beclin 1-mediated
12
1-mediated autophagy
12
fe65
10
autophagy
9
fe65 c-terminus
8
fe65-beclin interaction
8
beclin
6
autophagy potentiated
4
interaction
4
potentiated interaction
4

Similar Publications

Autophagy is a vital cellular pathway in eukaryotic cells, including neurons, where it plays significant roles in neurodevelopment and maintenance. A crucial step in autophagy is the formation of the class III phosphatidylinositol 3-kinase complex 1 (PI3KC3-C1), which is essential for initiating autophagosome biogenesis. Beclin 1 is the key component of PI3KC3-C1, and its interactors have been reported to affect autophagy.

View Article and Find Full Text PDF

Bisdemethoxycurcumin mitigates traumatic brain injury in rats by modulating autophagy and oxidative stress via heat shock protein 90 alpha family class A member 1-mediated nuclear translocation of transcription factor EB.

Brain Res Bull

January 2025

The First Affiliated Hospital, Department of Critical Care Medicine, Hengyang Medical School, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan Province, People's Republic of China. Electronic address:

Background: Bisdemethoxycurcumin (BDMC), the primary active compound found in turmeric, exhibits diverse pharmacological properties. The study aimed to investigate the mechanisms underlying the protective effects of BDMC in traumatic brain injury (TBI).

Methods: A rat TBI model was established using the Feeney's freefall epidural impact method, followed by BDMC treatment.

View Article and Find Full Text PDF

Chronic pain is a debilitative disease affecting 1 in 5 adults globally, and is a major risk factor for anxiety (Goldberg and McGee, 2011; Lurie, DI., 2018). Given the current dearth of available treatments for both individuals living with chronic pain and mental illnesses, there is a critical need for research into the molecular mechanisms involved in order to discover novel treatment targets.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the third most prevalent cancer worldwide. While chemotherapy remains the standard treatment approach, natural products have emerged as a promising alternative. Among these, apigenin, a natural flavonoid, has garnered significant attention due to its pro-oxidant and antioxidant properties in various types of cancer.

View Article and Find Full Text PDF

Aloperine Attenuates UVB-induced Damage in Skin Fibroblasts via Activating TFE3/Beclin-1-Mediated Autophagy.

Protein Pept Lett

January 2025

Maternal and Child Research Institute, Shunde Women and Children's Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, 528300, China.

Background: Aloperine (ALO) is an important active ingredient in the traditional Chinese medicinal plant Sophora alopecuroides L and has a significant autophagy-stimulating effect. The effect of ALO on cytotoxicity caused by UVB radiation in skin fibroblasts and the potential mechanism remains unclear.

Objective: The present study aimed to assess the effect of ALO on UVB-induced damage in skin fibroblasts and investigate its possible mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!