To evaluate and compare the effectiveness of prediction models for Argentine squid trawling grounds in the Southwest Atlantic high seas based on vessel position and fishing log data, this study used AIS datasets and fishing log datasets from fishing seasons spanning 2019-2024 (December to June each year). Using a spatial resolution of 0.1° × 0.1° and a monthly temporal resolution, we constructed two datasets-one based on vessel positions and the other on fishing logs. Fishing ground levels were defined according to the density of fishing locations, and combined with oceanographic data (sea surface temperature, 50 m water temperature, sea surface salinity, sea surface height, and mixed layer depth). A CNN-Attention deep learning model was applied to each dataset to develop trawling ground prediction models. Model accuracy was then compared and potential causes for differences were analyzed. Results showed that the vessel position-based model had a higher accuracy (Accuracy = 0.813) and lower loss rate (Loss = 0.407) than the fishing log-based model (Accuracy = 0.727, Loss = 0.513). The vessel-based model achieved a prediction accuracy of 0.763 on the 2024 test set, while the fishing log-based model reached an accuracy of 0.712, slightly lower than the former, indicating the high accuracy and unique advantages of the vessel position-based model in predicting fishing grounds. Using CPUE from fishing logs as a reference, we found that the vessel position-based model performed well from January to April, whereas the CPUE-based model consistently maintained good accuracy across all months. The 2024 fishing season predictions indicated the formation of primary fishing grounds as early as January 2023, initially near the 46° S line of the Argentine Exclusive Economic Zone, with grounds shifting southeastward from March onward and reaching around 42° S by May and June. This study confirms the reliability of vessel position data in identifying fishing ground information and levels, with higher accuracy in some months compared to the fishing log-based model, thereby reducing the data lag associated with fishing logs, which are typically available a year later. Additionally, national-level fishing log data are often confidential, limiting the ability to fully consider fishing activities across the entire fishing ground region, a limitation effectively addressed by AIS vessel position data. While vessel data reflects daily catch volumes across vessels without distinguishing CPUE by species, log data provide a detailed daily CPUE breakdown by species (e.g., ). This distinction resulted in lower accuracy for vessel-based predictions in December 2023 and May-June 2024, suggesting the need to incorporate fishing log data for more precise assessments of fishing ground levels or resource abundance during those months. Given the near-real-time nature of vessel position data, fishing ground dynamics can be monitored in near real time. The successful development of vessel position-based prediction models aids enterprises in reducing fuel and time costs associated with indiscriminate squid searches, enhancing trawling efficiency. Additionally, such models support quota management in global fisheries by optimizing resource use, reducing fishing time, and consequently lowering carbon emissions and environmental impact, while promoting marine environmental protection in the Southwest Atlantic high seas.

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology14010035DOI Listing

Publication Analysis

Top Keywords

fishing
23
vessel position
20
fishing log
20
log data
20
fishing ground
20
prediction models
16
vessel position-based
16
southwest atlantic
12
atlantic high
12
high seas
12

Similar Publications

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

A vision model for automated frozen tuna processing.

Sci Rep

January 2025

School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.

Accurate and rapid segmentation of key parts of frozen tuna, along with precise pose estimation, is crucial for automated processing. However, challenges such as size differences and indistinct features of tuna parts, as well as the complexity of determining fish poses in multi-fish scenarios, hinder this process. To address these issues, this paper introduces TunaVision, a vision model based on YOLOv8 designed for automated tuna processing.

View Article and Find Full Text PDF

Black carp (Mylopharyngodon piceus) is one of the "four famous domestic fishes" in China and an important economic fish in freshwater aquaculture. A high-quality genome is essential for advancing future biological research and breeding programs for this species. In this study, we aimed to generate a high-quality chromosome-level genome assembly of black carp using Nanopore and Hi-C technologies.

View Article and Find Full Text PDF

Artificial fish nests are common tools in fisheries management, providing spawning grounds to enhance the size and diversity of fish populations. This study aimed to explore the effects of deployment locations on the reproductive efficiency and preferences of fish with adhesive and demersal eggs using artificial nests. Floating artificial nests were deployed in three regions (upstream, midstream, and downstream) of a reservoir in Zhejiang, China, at locations with three topographical types: steep slope (reservoir shore, slopes > 60°), gentle slope (reservoir shore, slopes < 30°), and confluence (middle thread of channel).

View Article and Find Full Text PDF

The foremost cause of dementia is Alzheimer's disease (AD). The vital pathological hallmarks of AD are amyloid beta (Aβ) peptide and hyperphosphorylated tau (p-tau) protein. The current animal models used in AD research do not precisely replicate disease pathophysiology, making it difficult for researchers to quickly and effectively gather data or screen potential therapy possibilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!